Skip to main content

Advertisement

Log in

The Role of Bone Biopsy in the Management of CKD-MBD

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

A bone biopsy is still considered the gold standard for diagnosis of renal osteodystrophy. It allows to measure both static and dynamic parameters of bone remodeling and is the only method able to evaluate mineralization and allows analysis of both cortical and trabecular bone. Although bone volume can be measured indirectly by dual-energy X-ray absorptiometry, mineralization defects, bone metal deposits, cellular number/activity, and even turnover abnormalities are difficult to determine by techniques other than qualitative bone histomorphometry. In this review, we evaluate the role of bone biopsy in the clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Moe S, Drueke T, Cunningham J et al (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int 69:1945–1953

    CAS  PubMed  Google Scholar 

  2. Vervloet MG, Massy ZA, Brandenburg VM et al (2014) Bone: a new endocrine organ at the heart of chronic kidney disease and mineral and bone disorders. Lancet Diabetes Endocrinol 2:427–436

    PubMed  Google Scholar 

  3. Ketteler M, Block GA, Evenepoel P et al (2017) Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: what’s changed and why it matters. Kidney Int 92:26–36

    PubMed  Google Scholar 

  4. Kidney Disease: Improving Global Outcomes CKDMBDWG (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 113:S1-130

    Google Scholar 

  5. Evenepoel P, D’Haese P, Bacchetta J et al (2017) Bone biopsy practice patterns across Europe: the European renal osteodystrophy initiative-a position paper. Nephrol Dial Transplant 32:1608–1613

    PubMed  Google Scholar 

  6. Nandiraju D, Ahmed I (2019) Human skeletal physiology and factors affecting its modeling and remodeling. Fertil Steril 112:775–781

    CAS  PubMed  Google Scholar 

  7. Carvalho C, Magalhaes J, Pereira L, Simoes-Silva L, Castro-Ferreira I, Frazao JM (2016) Evolution of bone disease after kidney transplantation: a prospective histomorphometric analysis of trabecular and cortical bone. Nephrology 21:55–61

    PubMed  Google Scholar 

  8. Hruska KA, Sugatani T, Agapova O, Fang Y (2017) The chronic kidney disease: mineral bone disorder (CKD-MBD): advances in pathophysiology. Bone 100:80–86

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bover J, Bailone L, Lopez-Baez V et al (2017) Osteoporosis, bone mineral density and CKD-MBD: treatment considerations. J Nephrol 30:677–687

    PubMed  Google Scholar 

  10. Kidney Disease: Improving Global Outcomes CKDMBDUWG (2017) KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl 7:1–59

    Google Scholar 

  11. Yenchek RH, Ix JH, Shlipak MG et al (2012) Bone mineral density and fracture risk in older individuals with CKD. Clin J Am Soc Nephrol 7:1130–1136

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Iimori S, Mori Y, Akita W et al (2012) Diagnostic usefulness of bone mineral density and biochemical markers of bone turnover in predicting fracture in CKD stage 5D patients–a single-center cohort study. Nephrol Dial Transplant 27:345–351

    CAS  PubMed  Google Scholar 

  13. Akaberi S, Simonsen O, Lindergard B, Nyberg G (2008) Can DXA predict fractures in renal transplant patients? Am J Transplant 8:2647–2651

    CAS  PubMed  Google Scholar 

  14. Babayev R, Nickolas TL (2015) Bone disorders in chronic kidney disease: an update in diagnosis and management. Semin Dial 28:645–653

    PubMed  Google Scholar 

  15. Dall’Ara E, Pahr D, Varga P, Kainberger F, Zysset P (2012) QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA. Osteoporos Int 23:563–572

    CAS  PubMed  Google Scholar 

  16. Benillouche E, Ostertag A, Marty C, Urena Torres P, Cohen-Solal M (2020) Cortical bone microarchitecture in dialysis patients. Am J Nephrol 51:833–838

    PubMed  Google Scholar 

  17. Babayev R, Nickolas TL (2014) Can one evaluate bone disease in chronic kidney disease without a biopsy? Curr Opin Nephrol Hypertens 23:431–437

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Torres PU, Bover J, Mazzaferro S, de Vernejoul MC, Cohen-Solal M (2014) When, how, and why a bone biopsy should be performed in patients with chronic kidney disease. Semin Nephrol 34:612–625

    PubMed  Google Scholar 

  19. Nishiyama KK, Shane E (2013) Clinical imaging of bone microarchitecture with HR-pQCT. Curr Osteoporos Rep 11:147–155

    PubMed  PubMed Central  Google Scholar 

  20. Wehrli FW (2007) Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J Magn Reson Imaging 25:390–409

    PubMed  Google Scholar 

  21. Jamal S, Cheung AM, West S, Lok C (2012) Bone mineral density by DXA and HR pQCT can discriminate fracture status in men and women with stages 3 to 5 chronic kidney disease. Osteoporos Int 23:2805–2813

    CAS  PubMed  Google Scholar 

  22. Silva BC, Leslie WD, Resch H et al (2014) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29:518–530

    PubMed  Google Scholar 

  23. Aleksova J, Kurniawan S, Elder GJ (2018) The trabecular bone score is associated with bone mineral density, markers of bone turnover and prevalent fracture in patients with end stage kidney disease. Osteoporos Int 29:1447–1455

    CAS  PubMed  Google Scholar 

  24. Daya NR, Voskertchian A, Schneider AL et al (2016) Kidney function and fracture risk: the atherosclerosis risk in communities (ARIC) study. Am J Kidney Dis 67:218–226

    PubMed  Google Scholar 

  25. Alem AM, Sherrard DJ, Gillen DL et al (2000) Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int 58:396–399

    CAS  PubMed  Google Scholar 

  26. Evenepoel P, Claes K, Meijers B et al (2019) Bone mineral density, bone turnover markers, and incident fractures in de novo kidney transplant recipients. Kidney Int 95:1461–1470

    PubMed  Google Scholar 

  27. Jadoul M, Albert JM, Akiba T et al (2006) Incidence and risk factors for hip or other bone fractures among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study. Kidney Int 70:1358–1366

    CAS  PubMed  Google Scholar 

  28. Malluche HH, Monier-Faugere MC, Herberth J (2010) Bone disease after renal transplantation. Nat Rev Nephrol 6:32–40

    PubMed  Google Scholar 

  29. Stompor T (2014) Coronary artery calcification in chronic kidney disease: an update. World J Cardiol 6:115–129

    PubMed  PubMed Central  Google Scholar 

  30. Schaffler MB, Cheung WY, Majeska R, Kennedy O (2014) Osteocytes: master orchestrators of bone. Calcif Tissue Int 94:5–24

    CAS  PubMed  Google Scholar 

  31. Sprague SM, Bellorin-Font E, Jorgetti V et al (2016) Diagnostic accuracy of bone turnover markers and bone histology in patients With CKD treated by dialysis. Am J Kidney Dis 67:559–566

    PubMed  Google Scholar 

  32. Blake GM, Puri T, Siddique M, Frost ML, Moore AEB, Fogelman I (2018) Site specific measurements of bone formation using [(18)F] sodium fluoride PET/CT. Quant Imaging Med Surg 8:47–59

    PubMed  PubMed Central  Google Scholar 

  33. Ferreira MA (2000) Diagnosis of renal osteodystrophy: when and how to use biochemical markers and non-invasive methods; when bone biopsy is needed. Nephrol Dial Transplant 15(Suppl 5):8–14

    PubMed  Google Scholar 

  34. Galvao MJ, Santos A, Ribeiro MD, Ferreira A, Nolasco F (2011) Optimization of the tartrate-resistant acid phosphatase detection by histochemical method. Eur J Histochem 55:e1

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Soeiro EMD, Castro L, Menezes R et al (2020) Association of parathormone and alkaline phosphatase with bone turnover and mineralization in children with CKD on dialysis: effect of age, gender, and race. Pediatr Nephrol 35:1297–1305

    PubMed  Google Scholar 

  36. Pimentel A, Urena-Torres P, Zillikens MC, Bover J, Cohen-Solal M (2017) Fractures in patients with CKD-diagnosis, treatment, and prevention: a review by members of the European Calcified Tissue Society and the European Renal Association of Nephrology Dialysis and Transplantation. Kidney Int 92:1343–1355

    PubMed  Google Scholar 

  37. Khairallah P, Nickolas TL (2018) Management of osteoporosis in CKD. Clin J Am Soc Nephrol 13:962–969

    PubMed  PubMed Central  Google Scholar 

  38. Pereira ABFJ (2020) Kidney-induced osteoporosis: a new entity with a novel therapeutic approach. Port J Nephrol Hypert 34:92–100

    Google Scholar 

  39. Araujo SM, Ambrosoni P, Lobao RR et al (2003) The renal osteodystrophy pattern in Brazil and Uruguay: an overview. Kidney Int Suppl 85:S54–S56

    Google Scholar 

  40. Piraino B, Chen T, Cooperstein L, Segre G, Puschett J (1988) Fractures and vertebral bone mineral density in patients with renal osteodystrophy. Clin Nephrol 30:57–62

    CAS  PubMed  Google Scholar 

  41. Gerakis A, Hadjidakis D, Kokkinakis E, Apostolou T, Raptis S, Billis A (2000) Correlation of bone mineral density with the histological findings of renal osteodystrophy in patients on hemodialysis. J Nephrol 13:437–443

    CAS  PubMed  Google Scholar 

  42. Andress DL, Ott SM, Maloney NA, Sherrard DJ (1985) Effect of parathyroidectomy on bone aluminum accumulation in chronic renal failure. N Engl J Med 312:468–473

    CAS  PubMed  Google Scholar 

  43. Slatopolsky E (1987) The interaction of parathyroid hormone and aluminum in renal osteodystrophy. Kidney Int 31:842–854

    CAS  PubMed  Google Scholar 

  44. Robinson DE, Ali MS, Pallares N et al (2020) Safety of oral bisphosphonates in moderate-to-severe chronic kidney disease: a bi-national cohort analysis. J Bone Miner Res. https://doi.org/10.1002/jbmr.4235

    Article  Google Scholar 

  45. Alarkawi D, Ali MS, Bliuc D et al (2020) Oral bisphosphonate use and all-cause mortality in patients with moderate-severe (Grade 3B–5D) chronic kidney disease: a population-based cohort study. J Bone Miner Res 35:894–900

    CAS  PubMed  Google Scholar 

  46. Rodd C (2001) Bisphosphonates in dialysis and transplantation patients: efficacy and safety issues. Perit Dial Int 21(Suppl 3):S256–S260

    PubMed  Google Scholar 

  47. Broadwell A, Chines A, Ebeling PR et al (2021) Denosumab safety and efficacy among participants in the FREEDOM extension study with mild to moderate chronic kidney disease. J Clin Endocrinol Metab 106:397–409

    PubMed  Google Scholar 

  48. Chen CL, Chen NC, Hsu CY et al (2014) An open-label, prospective pilot clinical study of denosumab for severe hyperparathyroidism in patients with low bone mass undergoing dialysis. J Clin Endocrinol Metab 99:2426–2432

    CAS  PubMed  Google Scholar 

  49. Iseri K, Watanabe M, Yoshikawa H et al (2019) Effects of denosumab and alendronate on bone health and vascular function in hemodialysis patients: a randomized. Controlled Trial J Bone Miner Res 34:1014–1024

    CAS  PubMed  Google Scholar 

  50. Hagino H, Narita R, Yokoyama Y, Watanabe M, Tomomitsu M (2019) A multicenter, randomized, rater-blinded, parallel-group, phase 3 study to compare the efficacy, safety, and immunogenicity of biosimilar RGB-10 and reference once-daily teriparatide in patients with osteoporosis. Osteoporos Int 30:2027–2037

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cejka D, Kodras K, Bader T, Haas M (2010) Treatment of hemodialysis-associated adynamic bone disease with teriparatide (PTH1-34): a pilot study. Kidney Blood Press Res 33:221–226

    CAS  PubMed  Google Scholar 

  52. McClung MR, Grauer A, Boonen S et al (2014) Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370:412–420

    CAS  PubMed  Google Scholar 

  53. Chavassieux P, Chapurlat R, Portero-Muzy N et al (2019) Bone-forming and antiresorptive effects of romosozumab in postmenopausal women with osteoporosis: bone histomorphometry and microcomputed tomography analysis after 2 and 12 months of treatment. J Bone Miner Res 34:1597–1608

    CAS  PubMed  Google Scholar 

  54. Padhi D, Jang G, Stouch B, Fang L, Posvar E (2011) Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 26:19–26

    CAS  PubMed  Google Scholar 

  55. Saag KG, Petersen J, Brandi ML et al (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377:1417–1427

    CAS  PubMed  Google Scholar 

  56. Lewiecki EM, Blicharski T, Goemaere S et al (2018) A phase III randomized placebo-controlled trial to evaluate efficacy and safety of romosozumab in men with osteoporosis. J Clin Endocrinol Metab 103:3183–3193

    PubMed  Google Scholar 

  57. Goncalves FL, Elias RM, dos Reis LM et al (2014) Serum sclerostin is an independent predictor of mortality in hemodialysis patients. BMC Nephrol 15:190

    PubMed  PubMed Central  Google Scholar 

  58. Qureshi AR, Olauson H, Witasp A et al (2015) Increased circulating sclerostin levels in end-stage renal disease predict biopsy-verified vascular medial calcification and coronary artery calcification. Kidney Int 88:1356–1364

    CAS  PubMed  Google Scholar 

  59. Drechsler C, Evenepoel P, Vervloet MG et al (2015) High levels of circulating sclerostin are associated with better cardiovascular survival in incident dialysis patients: results from the NECOSAD study. Nephrol Dial Transplant 30:288–293

    CAS  PubMed  Google Scholar 

  60. Viaene L, Behets GJ, Claes K et al (2013) Sclerostin: another bone-related protein related to all-cause mortality in haemodialysis? Nephrol Dial Transplant 28:3024–3030

    CAS  PubMed  Google Scholar 

  61. Cournot-Witmer G, Zingraff J, Plachot JJ et al (1981) Aluminum localization in bone from hemodialyzed patients: relationship to matrix mineralization. Kidney Int 20:375–378

    CAS  PubMed  Google Scholar 

  62. Nebeker HG, Coburn JW (1986) Aluminum and renal osteodystrophy. Annu Rev Med 37:79–95

    CAS  PubMed  Google Scholar 

  63. Malluche HH (2002) Aluminium and bone disease in chronic renal failure. Nephrol Dial Transplant 17(Suppl 2):21–24

    CAS  PubMed  Google Scholar 

  64. Faugere MC, Malluche HH (1986) Stainable aluminum and not aluminum content reflects bone histology in dialyzed patients. Kidney Int 30:717–722

    CAS  PubMed  Google Scholar 

  65. Goodman WG (1985) Bone disease and aluminum: pathogenic considerations. Am J Kidney Dis 6:330–335

    CAS  PubMed  Google Scholar 

  66. Smans KA, D’Haese PC, Van Landeghem GF et al (2000) Transferrin-mediated uptake of aluminium by human parathyroid cells results in reduced parathyroid hormone secretion. Nephrol Dial Transplant 15:1328–1336

    CAS  PubMed  Google Scholar 

  67. Felsenfeld AJ, Rodriguez M, Coleman M, Ross D, Llach F (1989) Desferrioxamine therapy in hemodialysis patients with aluminum-associated bone disease. Kidney Int 35:1371–1378

    CAS  PubMed  Google Scholar 

  68. Behets GJ, Verberckmoes SC, D’Haese PC, De Broe ME (2004) Lanthanum carbonate: a new phosphate binder. Curr Opin Nephrol Hypertens 13:403–409

    CAS  PubMed  Google Scholar 

  69. Pennick M, Dennis K, Damment SJ (2006) Absolute bioavailability and disposition of lanthanum in healthy human subjects administered lanthanum carbonate. J Clin Pharmacol 46:738–746

    CAS  PubMed  Google Scholar 

  70. Behets GJ, Dams G, Vercauteren SR et al (2004) Does the phosphate binder lanthanum carbonate affect bone in rats with chronic renal failure? J Am Soc Nephrol 15:2219–2228

    CAS  PubMed  Google Scholar 

  71. Behets GJ, Verberckmoes SC, Oste L et al (2005) Localization of lanthanum in bone of chronic renal failure rats after oral dosing with lanthanum carbonate. Kidney Int 67:1830–1836

    CAS  PubMed  Google Scholar 

  72. D’Haese PC, Spasovski GB, Sikole A et al (2003) A multicenter study on the effects of lanthanum carbonate (Fosrenol) and calcium carbonate on renal bone disease in dialysis patients. Kidney Int Suppl 85:S73–S78

    CAS  Google Scholar 

  73. Carrillo-Lopez N, Fernandez-Martin JL, Alvarez-Hernandez D et al (2010) Lanthanum activates calcium-sensing receptor and enhances sensitivity to calcium. Nephrol Dial Transplant 25:2930–2937

    CAS  PubMed  Google Scholar 

  74. McCarthy JT, Hodgson SF, Fairbanks VF, Moyer TP (1991) Clinical and histologic features of iron-related bone disease in dialysis patients. Am J Kidney Dis 17:551–561

    CAS  PubMed  Google Scholar 

  75. Van de Vyver FL, Visser WJ, D’Haese PC, De Broe ME (1990) Iron overload and bone disease in chronic dialysis patients. Nephrol Dial Transplant 5:781–787

    PubMed  Google Scholar 

  76. Velasquez Forero F, Altamirano E, Ramos PT (1998) High frequency of iron bone deposits in a Mexican population with renal osteodystrophy. Nephrol Dial Transplant 13(Suppl 3):46–50

    PubMed  Google Scholar 

  77. Van Landeghem GF, D’Haese PC, Lamberts LV, De Broe ME (1997) Competition of iron and aluminum for transferrin: the molecular basis for aluminum deposition in iron-overloaded dialysis patients? Exp Nephrol 5:239–245

    PubMed  Google Scholar 

  78. Toxqui L, Vaquero MP (2015) Chronic iron deficiency as an emerging risk factor for osteoporosis: a hypothesis. Nutrients 7:2324–2344

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Cunningham J, Rodriguez M, Messa P (2012) Magnesium in chronic kidney disease Stages 3 and 4 and in dialysis patients. Clin Kidney J 5:i39–i51

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Navarro-Gonzalez JF, Mora-Fernandez C, Garcia-Perez J (2009) Clinical implications of disordered magnesium homeostasis in chronic renal failure and dialysis. Semin Dial 22:37–44

    PubMed  Google Scholar 

  81. D’Haese PC, Couttenye MM, Lamberts LV et al (1999) Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium, and calcium content in bone of end-stage renal failure patients. Clin Chem 45:1548–1556

    CAS  PubMed  Google Scholar 

  82. Huang JH, Cheng FC, Wu HC (2015) Low magnesium exacerbates osteoporosis in chronic kidney disease patients with diabetes. Int J Endocrinol 2015:380247

    PubMed  PubMed Central  Google Scholar 

  83. Schrooten I, Elseviers MM, Lamberts LV, De Broe ME, D’Haese PC (1999) Increased serum strontium levels in dialysis patients: an epidemiological survey. Kidney Int 56:1886–1892

    CAS  PubMed  Google Scholar 

  84. D’Haese PC, Schrooten I, Goodman WG et al (2000) Increased bone strontium levels in hemodialysis patients with osteomalacia. Kidney Int 57:1107–1114

    CAS  PubMed  Google Scholar 

  85. Schrooten I, Cabrera W, Goodman WG et al (1998) Strontium causes osteomalacia in chronic renal failure rats. Kidney Int 54:448–456

    CAS  PubMed  Google Scholar 

  86. Schrooten I, Behets GJ, Cabrera WE et al (2003) Dose-dependent effects of strontium on bone of chronic renal failure rats. Kidney Int 63:927–935

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Contributions

AF had the idea for the article. ACF, MCS, PDH, and AF performed the literature search and data analysis. ACF, MCS, PDH, and AF drafted and/or critically revised the article.

Corresponding author

Correspondence to Ana Carina Ferreira.

Ethics declarations

Disclosure

Ana Carina Ferreira reports personal fees from Amgen and Viphor Pharma for giving lectures, outside the submitted work; Martine Cohen-Solal has no conflict of interest; Patrick C. D’Haese reports research grants from Vifor Pharma, Inositec, Rockwell Medical, Sanifit, Fresenius Medical Care, Oxthera, Shire Pharmaceuticals, and Amgen, outside the submitted work; Aníbal Ferreira reports personal fees, grants, and participation in advisory boards from Abbvie, Astellas, Amgen, Baxter, Merck Sharp and Dhome, Mundipharma, Nephrocare-Fresenius Medical Care, Sanofi, and Vifor Pharma, outside the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, A.C., Cohen-Solal, M., D’Haese, P.C. et al. The Role of Bone Biopsy in the Management of CKD-MBD. Calcif Tissue Int 108, 528–538 (2021). https://doi.org/10.1007/s00223-021-00838-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-021-00838-z

Keyword

Navigation