Skip to main content
Log in

The mysterious grooves of Volcán Bárcena: a review of the role of streamwise counter-rotating vortices during erosion by dilute pyroclastic density currents

  • Review Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

A Correction to this article was published on 10 April 2021

This article has been updated

Abstract

Although erosion during high-energy passage of a pyroclastic density current (PDC) causes great damage, analyses of the effects of such erosion are sparse in scientific literature compared to observations and interpretations of depositional processes. In this paper, we review observations of surfaces where PDCs have eroded sets of grooves that provide information on the erosion process. We postulate that in some cases, the grooves were carved by streamwise vortices in the boundary layer of the PDC and review possible fluid dynamic instabilities that can give rise to such vortices. For the prominent grooves at Volcán Bárcena, Mexico, we propose that a fluid dynamic instability, which we dub the “groovy instability,” occurred and caused formation of erosive counter-rotating vortices. This instability occurs when the particle concentration boundary layer thickness, δc, is larger than the velocity (shear) boundary layer thickness, δu, i.e., L=δcu>1. In subaqueous turbidity currents, these vortices have a typical wavelength of ~25*δc. If this relation is applied to the grooves formed on Volcán Bárcena, the inferred particle concentration boundary layer is estimated to have been <1 m thick. We postulate that a transition between erosion of grooves and deposition of dunes at Volcán Bárcena occurred when hydraulically supercritical flow on the upper flanks changed to subcritical flow about halfway down the mountain. We call attention to boundary layer dynamics in erosive pyroclastic density currents at a dimension that is difficult to scale quantitatively in laboratory experiments and is usually not resolved computationally and to the need for incorporating such dynamics into models of PDC dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Not applicable

Change history

References

  • Ancey C (2004) Powder snow avalanches: approximation as non-Boussinesq clouds with a Richardson number-dependent entertainment function. J Geophys Res 109:F01005

  • Bernard J, Kelfoun K, LePennec JL, Vargas SV (2014) Pyroclastic flow erosion and bulking processes: comparing field-based vs. modeling results at Tungurahua volcano. Ecuador Bull Volcanol 76:858

    Article  Google Scholar 

  • Brand BD, Mackaman-Lofland C, Pollock NM, Bendana S, Dawson B, Wichgers P (2014) Dynamics of pyroclastic density currents: conditions that promote substrate erosion and self-channelization—Mount St. Helens, Washington (USA). J Volcanol Geotherm Res 276:189–214

    Article  Google Scholar 

  • Branney MJ, Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc Memoir 27, London, Coleman

  • Breard ECP, Lube G (2017) Inside pyroclastic density currents-uncovering the enigmatic flow structure and transport behavior in large-scale experiments. Earth Planet Sci Lett 458:22–36

    Article  Google Scholar 

  • Breard ECP, Lube G, Jones JR, Dufek J, Cronin SJ, Valentine GA, Moebis A (2016) Coupling of turbulent and non-turbulent flow regimes within pyroclastic density currents. Nat Geosci 9:767–771

    Article  Google Scholar 

  • Brosch E, Lube G (2020) Spatiotemporal sediment transport and deposition processes in experimental dilute pyroclastic density currents. J Volcanol Geotherm Res 401:106946

    Article  Google Scholar 

  • Burgisser A, Bergantz GW (2002) Reconciling pyroclastic flow and surge: the multiphase physics of pyroclastic density currents. Earth Planet Sci Lett 202:405–418

    Article  Google Scholar 

  • Bursik MI, Woods AW (1996) The dynamics and thermodynamics of large ash flows. Bull Volcanol 58:175–193

    Article  Google Scholar 

  • Calder ES, Sparks RSJ, Gardeweg MC (2000) Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile. J Volcanol Geotherm Res 104:201–235

    Article  Google Scholar 

  • Carrivick JL, Smith MW, Quincey DJ (2016) Structure from motion in the geosciences. Wiley 197 pp

  • Cashman KV, Soule SA, Mackey BH, Deligne NI, Deardorff ND, Dietterich HR (2013) How lava flows: new insights from applications of lidar technologies to lava flow studies. Geosphere 9:1664–1680

  • Cantero MI, Balachandar S, Garcia MH (2007) High-resolution simulations of cylindrical density currents. J Fluid Mech 590:437–469

    Article  Google Scholar 

  • Coleman JM (1981) Erosional grooves on continental shelf edge, Mississippi delta region. Geo-Marine Lett 1:11–15

    Article  Google Scholar 

  • Dellino P, Mele D, Sulpizio R, La Volpe L, Braia G (2008) A method for the calculation of the impact parameters of dilute pyroclastic density currents based on deposit particle characteristics. J Geophys Res 113:1–21

    Google Scholar 

  • de’ Michieli Vitturi M, Esposti Ongaro T, Lari G, Aravena A (2019) IMEX_SfloW2D 1.0: a depth-averaged numerical flow model for pyroclastic avalanches. Geosci. Model Dev 12:581–595

    Article  Google Scholar 

  • Doronzo DM, Marti J, Dellino P, Giordano G, Sulpizio R (2016) Dust storms, volcanic ash hurricanes, and turbidity currents: physical similarities and differences with emphasis on flow temperature. Arab J Geosci 9:9

    Article  Google Scholar 

  • Douillet GA, Pacheco DA, Kueppers U, Letort J, Tsang-Hin-Sun E, Bustillos J, Hall M, Ramon P, Dingwell DB (2013a) Dune bedforms produced by dilute pyroclastic density currents from the August 2006 eruption of Tungurahua volcano. Ecuador Bull Volcanol 75:762–781

    Article  Google Scholar 

  • Douillet GA, Tsang-Hin-Sun E, Kueppers U, Letort J, Pacheco DA, Gold Stein F, Aulock FV, Lavallee Y, Hanson JB, Gustillos J, Robin C, Ramon P, Hall M, Dingwell DB (2013b) Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano. Ecuador Bull Volcanol 75:765–785

    Article  Google Scholar 

  • Dufek J (2016) The fluid mechanics of pyroclastic density currents. Annu Rev Fluid Mech 48:459–485

    Article  Google Scholar 

  • Dufek J, Ongaro TE, Roche O (2015) Pyroclastic density currents: processes and models. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) The encyclopedia of volcanoes. Elsevier, London, pp 617–629

    Chapter  Google Scholar 

  • Eglit ME, Kulibaba VS, Naaim M (2007) Impact of a snow avalanche against an obstacle. Formation of shock waves. Cold Reg Sci Technol 50:86–96

    Article  Google Scholar 

  • Fauria KE, Manga M, Chamberlain M (2016) Effect of particle entrainment on the runout of pyroclastic density currents. J Geophys Res 121:6445–6461

    Article  Google Scholar 

  • Fisher RV (1977) Erosion by volcanic base-surge density currents: U-shaped channels. Geol Soc Am Bull 88:1287–1297

    Article  Google Scholar 

  • Fisher RV, Glicken HX, Hoblitt RP (1987) May 18, 1980, Mount St. Helens deposits in South Coldwater Creek, Washington. J Geophys Res 92(B10):10,267–10,283

    Article  Google Scholar 

  • Freundt A, Schmincke H-U (1985) Lithic-enriched segregation bodies in pyroclastic flow deposits of Laacher See Volcano (East Eifel, Germany). J Volcanol Geotherm Res 25:193–224

    Article  Google Scholar 

  • Gioia G, Chakraborty P, Gary SF, Zamalloa CZ, Keane RD (2011) Residence time of buoyant objects in drowning machines. Proc Nat Acad Sciences 108(16):6361–6363

    Article  Google Scholar 

  • Grant KT, Estes GB (2009) Darwin in Galapagos: footsteps to a New World. Princeton Univ. Press, Princeton, p 376

    Google Scholar 

  • Hakonardottir KM (2004) The interaction between snow avalanches and dams. In: Mathematics. Univ. of Bristol, p 142 pp.

  • Hall B, Meiburg E, Kneller B (2008) Channel formation by turbidity currents: Navier-Stokes-based linear stability analysis. J Fluid Mech 615:185–210

    Article  Google Scholar 

  • Härtel C, Carlsson F, Thunblom M (2000b) Analysis and direct numerical simulation of the flow at a gravity-current head. Part 2. The lobe-and-cleft instability. J Fluid Mech 418:213–229

  • Härtel C, Meiburg E, Necker F (2000a) Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J Fluid Mech 418:189–212

  • Iverson RM, Ouyang C (2015) Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory. Rev Geophys 53:27–58

    Article  Google Scholar 

  • Karcz I (1967) Harrow marks, current-aligned sedimentary structures. J Geol 75(1):113–121

    Article  Google Scholar 

  • Kelfoun K (2017) A two-layer depth-averaged model for both the dilute and the concentrated parts of pyroclastic currents. J Geophys Res Solid Earth 122:4293–4311

    Article  Google Scholar 

  • Kieffer SW (1981) Fluid dynamics of the May 18 blast at Mount St. Helens. U.S. Geol Surv Prof Pap 1250:379–400

    Google Scholar 

  • Kieffer SW (1985) The 1983 hydraulic jump in crystal rapid: implications for river-running and geomorphic evolution in the Grand Canyon. J Geol 93(4):385–406

    Article  Google Scholar 

  • Kieffer SW, Sturtevant B (1988) Erosional grooves formed during the lateral blast at Mount-St-Helens, May 18, 1980. J Geophys Res Solid Earth 93(B12):14793–14816

    Article  Google Scholar 

  • Lacroix A (1904) La Montagne Pelee et ses Eruptions. Masson et Cie, Paris, p 662

    Google Scholar 

  • Lastras G, Canals M, Urgeles R, Amblas D, Ivanov M, Droz L, Dennielou B, Fabres J, Schoolmeester T, Akhmetzhanov A, Orange D, Garcia-Garcia A (2007) A walk down the Cap de Creus canyon, Northwestern Mediterranean Sea: recent processes inferred from morphology and sediment bedforms. Mar Geol 246(2-4):176–192

    Article  Google Scholar 

  • Le L, Pitman EB (2009) A model for granular flows over an erodible surface. SIAM J App Math 70(5):1407–1427

    Article  Google Scholar 

  • Levine AH, Kieffer SW (1991) Hydraulics of the August 7, 1980, pyroclastic flow at Mount St. Helens, Washington. Geology 19:1121–1124

    Article  Google Scholar 

  • Lube G, Breard ECP, Cronin SJ, Procter JN, Brenna M, Moebis A, Pardo N, Stewart RB, Jolly A, Fournier (2014) Dynamics of surges generated by hydrothermal blasts during the 6 August 2012 Te Maari eruption, Mt. Tongariro, New Zealand. J Volcanol Geotherm Res 286:348–366

    Article  Google Scholar 

  • Lube G, Breard ECP, Esposti-Ongaro T, Dufek J, Brand B (2020) Multiphase flow behavior and hazard prediction of pyroclastic density currents. Nature Rev Earth Environ 1:348–365

    Article  Google Scholar 

  • Macias JL, Espindola JM, Bursik MI, Sheridan MF (1998) Development of lithic-breccias in the 1982 pyroclastic flow deposits of El Chichon Volcano, Mexico. J Volcanol Geotherm Res 83:173–196

    Article  Google Scholar 

  • Mattson PH, Alvarez W (1973) Base surge deposits in Pleistocene volcanic ash near Rome. Trans Am Geophys Union 54(4):1–20

    Google Scholar 

  • Moore JG (1967) Base surge in recent volcanic eruptions. Bull Volcanol 30(1):337–363

    Article  Google Scholar 

  • Moore JG, Nakamura K, Alcaraz A (1966) The 1965 eruption of Taal Volcano. Science 151:955–960

    Article  Google Scholar 

  • Moore JG, Sisson TW (1981) Deposits and effects of the May 18 pyroclastic surge. In: Lipman PW, Mullineaux DR (eds) The 1980 Eruptions of Mount St. Helens. Washington. U.S. Gov. Printing Office, Washington, D.C., pp 421–438

    Google Scholar 

  • Nasr-Azadani MM, Meiburg E (2014) Turbidity currents interacting with three-dimensional seafloor topography. J Fluid Mech 75:409–443

    Article  Google Scholar 

  • Parker G, Fukushima Y, Pantin H (1986) Self-accelerating turbidity currents. J Fluid Mech 171:145–181

    Article  Google Scholar 

  • Pierson TC (1995) Flow characteristics of large eruption-triggered debris flows at snow-clad volcanoes: constraints for debris-flow models. J Volcanol Geotherm Res 66:283–294

    Article  Google Scholar 

  • Pierson TC, Janda RJ, Thouret JC, Borrero CA (1990) Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars. J Volcanol Geotherm Res 41:17–66

    Article  Google Scholar 

  • Pittaluga MB, Imran J (2014) A simple model for vertical profiles of velocity and suspended sediment concentration in straight and curved submarine channels. J Geophys Res F Earth Surf 119:483–503

    Article  Google Scholar 

  • Pollock NM, Brand BD, Rowley PJ, Sarocchi D, Sulpizio R (2019) Inferring pyroclastic density current flow conditions using syn-depositional sedimentary structures. Bull Volcanol 81:16

    Article  Google Scholar 

  • Puig P, Palanques A, Orange DL, Lastras G, Canals M (2008) Dense shelf water cascades and sedimentary groove formation in the Cap de Creus Canyon, northwestern Mediterranean Sea. Cont Shelf Res 28:2017–2030

    Article  Google Scholar 

  • Rastello M, Hopfinger EJ (2004) Sediment-entraining suspension clouds: a model of powder-snow avalanches. J Fluid Mech 509:181–206

    Article  Google Scholar 

  • Richards AF (1956) Geology of the Islas Revillagigedo, Mexico. 1, Birth and development of Volcán Bárcena, Isla San Benedicto. Bull Volcanol 22:73–123

  • Robinson JE, Bacon CR, Major JJ, Wright HM, Vallance JW (2017) Surface morphology of caldera-forming eruption deposits revealed by lidar mapping of Crater Lake National Park, Oregon—implications for deposition and surface modification. J Volcanol Geotherm Res 342:61–78

    Article  Google Scholar 

  • Roche O (2015) Nature and velocity of pyroclastic density currents inferred from models of entrainment of substrate lithic clasts. Earth Planet Sci Lett 418:115–125

    Article  Google Scholar 

  • Saucedo R, Macias JL, Bursik MI, Mora JC, Gavilanes JC, Cortes A (2002) Emplacement of pyroclastic flows during the 1990-1999 eruption of Volcan de Colima, Mexico. J Volcanol Geotherm Res 117:129–153

    Article  Google Scholar 

  • Scarpati C, Perrotta A (2012) Erosional characteristics and behavior of large pyroclastic density currents. Geology 40(11):1035–1038

    Article  Google Scholar 

  • Sequeiros OE (2012) Estimating turbidity current conditions from channel morphology: A Froude number approach. J Geophys Res 117:C040003 19 pages

    Google Scholar 

  • Shimizu HA, Koyaguchi T, Suzuki YJ (2019) The run-out distance of large-scale pyroclastic density currents: a two-layer depth-averaged model. Jour. Volcanol Geotherm Res 381:168–184

    Article  Google Scholar 

  • Simpson JE (1997) Gravity currents: In the Environment and the Laboratory. Cambridge University Press, Cambridge

    Google Scholar 

  • Sparks RSJ, Barclay J, Calder ES, Herd RA, Komorowski JC, Luckett R, Norton GE, Ritchie LJ, Voight B, Woods AW (2002) Generation of a debris avalanche and violent pyroclastic density current on 26 December (Boxing Day) 1997 at Soufrière Hills Volcano, Montserrat. In: T.H. D, Kokelaar BP (eds) The Eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geol Soc London Mem, London 21, pp 409-434

  • Sparks RSJ, Gardeweg MC, Calder ES, Matthews SJ (1997) Erosion by pyroclastic flows on Lascar volcano, Chile. Bull Volcanol 58:557–565

    Article  Google Scholar 

  • Sulpizio R, Dellino P, Doronzo DM, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J Volcanol Geotherm Res 283:36–65

    Article  Google Scholar 

  • Swearingen JD, Blackwelder RF (1987) The growth and breakdown of streamwise vortices in the presence of a wall. J Fluid Mech 182:255–290

    Article  Google Scholar 

  • Tani I (1962) Production of longitudinal vortices in boundary layer along a concave wall. J Geophys Res 67(8):3075–3080

    Article  Google Scholar 

  • Thouret J-C (1990) Effects of the November 13, 1985 eruption on the snow pack and ice cap of Nevado del Ruiz volcano, Colombia. J Volcanol Geotherm Res 41:177–201

    Article  Google Scholar 

  • Timmermans ME, Lister JR, Huppert HE (2001) Compressible particle-driven gravity currents. J Fluid Mech 445:305–325

    Article  Google Scholar 

  • Valentine GA (1987) Stratified flow in pyroclastic surges. Bull Volcanol 49(4):616–630

    Article  Google Scholar 

  • Wadey PD (1991) On the nonlinear development of Gortler vortices in a compressible boundary layer. Stud Appl Matt 85:317–341

    Article  Google Scholar 

  • Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM (2012) 'Structure-from motion- photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300–314

    Article  Google Scholar 

  • Wilkinson C, Harbor DJ, Helgans E, Keuhner JP (2018) Plucking phenomena in nonuniform flow. Geosphere 14(5):2157–2170

    Article  Google Scholar 

  • Williams H (1952) Recent eruption on San Benedicto Island, Revilla Gigedo Group, Mexico. The Volcano Letter 517(7):1

    Google Scholar 

  • Wohletz KH (1980) Explosive hydromagmatic volcanism. Ph.D. thesis. Arizona State University, Tempe, AZ

  • Woods AW, Bursik MI (1994) A laboratory study of ash flows. J Geophys Res 99(B3):4375–4394

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jim Moore of the US Geological Survey for providing Richards’ original photos, Tom Pierson of the US Geological Survey for the Ruiz observations and photos, and Steve Sparks and Simon Powell of Bristol University for the images of Lascar and Soufrière Hills. We also thank Michael Ort for handling the reviews and for his own review comments, Frances van Wyk de Vries for the help with submission logistics, Andrew Harris for the encouragement to write this review article, and Roberto Sulpizio and an anonymous reviewer for the very detailed and helpful comments that greatly improved our analysis of the grooves on Volcán Bárcena.

Code availability

Not applicable

Funding

SWK gratefully acknowledges support from the Charles R. Walgreen, Jr. Foundation. EM gratefully acknowledges support from the National Science Foundation under grant CBET-1803380 and from the Army Research Office under grant W911NF-18-1-0379. JB acknowledges support from the Jack and Richard Threet chair in Sedimentary Geology. JMA thanks the Foster and Coco Stanback Innovation Fund for their support of this collaboration.

Author information

Authors and Affiliations

Authors

Contributions

SWK, EM, and JB were involved in all aspects of the work. JA was involved in the supercritical flow/hydraulic jump theory.

Corresponding author

Correspondence to Susan W. Kieffer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Editorial responsibility: M.H. Ort

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kieffer, S.W., Meiburg, E., Best, J. et al. The mysterious grooves of Volcán Bárcena: a review of the role of streamwise counter-rotating vortices during erosion by dilute pyroclastic density currents. Bull Volcanol 83, 26 (2021). https://doi.org/10.1007/s00445-021-01440-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-021-01440-9

Keywords

Navigation