Skip to main content

Advertisement

Log in

Source of 226Ra in Ramsar spring water, Iran: implication of water–rock interaction and stable isotopes

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This study was carried out primarily to understand the hydrogeochemical processes controlling the 226Ra anomalies in Ramsar area. Analyses revealed two types of water: (1) non-thermal Ca–HCO3 type and (2) thermal Na–Cl type, mainly of meteoric and hydrothermal origin, respectively. Non-thermal springs have higher concentrations of U due to silicate weathering. Thermal springs are characterized by high concentrations of 226Ra, As, Fe, Li, Cs, Rb, Sr, Ba, B, Br, F, NO3, PO43− and SiO2 resulting from high-temperature water–rossck interaction and mixing with hydrothermal fluids. Thermal springs are manifestations of an old hydrothermal system with subsurface reservoir temperatures varying between 83 and 100 °C. Radium activity is negatively correlated with pH and positively correlated with TDS, Cl, Ba, and Ca, reflecting competitive ion effects of alkaline-earth metals, complexing with Cl, and co-precipitation with barite and calcite. These processes are thought to be the dominant factors in controlling 226Ra mobility in spring water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

taken from Hounslow (2018), for the b diagram from Jalali (2005) (red and green circles represent Na-Cl thermal and Ca-HCO3 non-thermal springs, respectively)

Fig. 3
Fig. 4
Fig. 5
Fig. 6

modified from Kaasalainen and Stefansson (Kaasalainen and Stefánsson 2012), with the median rock ratios as given by the authors and references therein

Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alavi M (1996) Tectonostratigraphic synthesis and structural style of the Alborz Mountain System in Northern Iran. J Geodyn 21(1):1–33

    Article  Google Scholar 

  • Alçiçek H, Bülbül A, Alçiçek MC (2016) Hydrogeochemistry of the thermal waters from the Yenice geothermal field (Denizli Basin, Southwestern Anatolia, Turkey. J Volcanol Geotherm Res 309:118–138

    Article  Google Scholar 

  • Amini Birami F, Moore F, Faghihi R, Keshavarzi B (2019) Distribution of natural radionuclides and assessment of the associated radiological hazards in the rock and soil samples from a high-level natural radiation area. Northern Iran J Radioanal Nucl Ch 322(3):2091–2103

    Article  Google Scholar 

  • Amini Birami F, Moore F, Faghihi R, Keshavarz B (2020) Assessment of spring water quality and associated health risks in a high-level natural radiation area, North Iran. Environ Sci Pollut Res 1:1–14

    Google Scholar 

  • Anees M, Shah MM, Qureshi AA (2015) Isotope studies and chemical investigations of Tattapani hot springs in Kotli (Kashmir, NE Pakistan): implications on reservoir origin and temperature. Procedia Earth Planet Sci 13:291–295

    Article  Google Scholar 

  • APHA (1995) Standard methods for the examination of water and wastewater, 19th Ed, American Public Health Association.

  • ASTM (2004) Standard practices for the measurement of radioactivity (D3648), Vol. 11.02.

  • Belhai M, Fujimitsu Y, Bouchareb-Haouchine FZ, Iwanaga T, Noto M, Nishijima J (2016) Hydrogeochemical and isotope geochemical study of Northwestern Algerian thermal waters. Arab J Geosci 9(3):169

    Article  Google Scholar 

  • Berberian F, Muir ID, Pankhurst RJ, Berberian M (1982) Late Cretaceous and early miocene andean-type plutonic activity in Northern Makran and Central Iran. J Geolo Soc Lond 139:605–614

    Article  Google Scholar 

  • Bozkurt A, Yorulmaz N, Kam E, Karahan G, Osmanlioglu AE (2007) Assessment of environmental radioactivity for Sanliurfa region of Southeastern Turkey. Radiat Meas 42(8):1387–1391

    Article  Google Scholar 

  • Bundschuh J, Maity JP (2015) Geothermal arsenic: occurrence, mobility and environmental implications. Renew Sustain Energy Rev 42:1214–1222

    Article  Google Scholar 

  • Cartier EG (1971) Geology of the lower Chalus Valley, central Alborz Iran. Geological institute, ETH-Zurich, pp 1–164

    Google Scholar 

  • Centeno J, Finkelman R, Selinus O (2016) Medical geology: Impacts of the natural environment on public health.

  • Chatterjee S, Sarkar A, Deodhar AS, Biswal BP, Jaryal A, Mohokar HV, Dash A (2017) Geochemical and isotope hydrological characterization of geothermal resources at Godavari valley. India Environ Earth Sci 76(2):97

    Article  Google Scholar 

  • Chenaker H, Houha B, Vincent V (2018) Hydrogeochemistry and geothermometry of thermal water from north-eastern Algeria. Geothermics 75:137–145

    Article  Google Scholar 

  • Curti E, Fujiwara K, Iijima K, Tits J, Cuesta C, Kitamura A, Müller W (2010) Radium uptake during barite recrystallization at 23±2° C as a function of solution composition: an experimental 133Ba and 226Ra tracer study. Geochim Cosmochim Acta 74(12):3553–4357

    Article  Google Scholar 

  • Dickson BL (1990) Radium in groundwater. The environmental behavior of radon, Ch. 4–2. IAEA Tech Rep Series 310:335–371

    Google Scholar 

  • Fathabadi N, Salehi AA, Naddafi K, Kardan MR, Yunesian M, Nodehi RN, Karimi M (2017) Radioactivity levels in the mostly local foodstuff consumed by residents of the high level natural radiation areas of Ramsar. Iran J Environ Radioact 169:209–213

    Article  Google Scholar 

  • Fathabadi N, Salehi AA, Naddafi K, Kardan MR, Yunesian M, Nodehi RN, Shooshtari MG (2019) Public ingestion exposure to 226Ra in Ramsar Iran. J Environ Radioact 198:11–17

    Article  Google Scholar 

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5(1–4):41–50

    Article  Google Scholar 

  • Fournier RO (1979) A revised equation for the Na/K geothermometer. Trans Geothermal Res Council 3:221–224

    Google Scholar 

  • Fournier RO, Truesdell AH (1973) An empirical Na-K-Ca geothermometer for natural waters. Geochim Cosmochim Acta 37(5):1255–1275

    Article  Google Scholar 

  • Ghiassi-Nejad M, Mortazavi SMJ, Cameron JR, Niroomand-Rad A, Karam PA (2002) Very high background radiation areas of Ramsar, Iran: preliminary biological studies. Health Phys 82(1):87–93

    Article  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria, derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52(12):2749–2765

    Article  Google Scholar 

  • Giggenbach WF (1991) Chemical techniques in geothermal exploration. Appl Geochem Geothermal Reserv Dev 2:119–144

    Google Scholar 

  • Gnanapragasam EK, Lewis BAG (1995) Elastic strain energy and the distribution coefficient of radium in solid solutions with calcium salts. Geochim Cosmochim Acta 59(24):5103–5111

    Article  Google Scholar 

  • Goguel R (1983) The rare alkalies in hydrothermal alteration at Wairakei and Broadlands, geothermal fields. NZ Geochim Cosmochim Acta 47(3):429–437

    Article  Google Scholar 

  • Grandia F, Merino J, Bruno J (2008) Assessment of the radium-barium co-precipitation and its potential influence on the solubility of Ra in the near-field (No. SKB-TR--08–07), Swedish Nuclear Fuel and Waste Management Co.

  • Guest B, Axen GJ, Lam PS, Hassanzadeh J (2006) Late Cenozoic shortening in the west-central Alborz Mountains, northern Iran, by combined conjugate strike-slip and thin-skinned deformation. Geosphere 2:35–52

    Article  Google Scholar 

  • Hammond DE, Zukin JG, Ku TL (1988) The kinetics of radioisotope exchange between brine and rock in a geothermal system. J Geophys Res Sol Ea 93(B11):13175–13186

    Article  Google Scholar 

  • Hernández-Morales P, Wurl J (2017) Hydrogeochemical characterization of the thermal springs in northeastern of Los Cabos Block, Baja California Sur. México Environ Sci Pollut Res 24(15):13184–13202

    Article  Google Scholar 

  • Hounslow A (2018) Water quality data: analysis and interpretation. CRC Press

    Book  Google Scholar 

  • Jalali M (2005) Major ion chemistry of groundwaters in the Bahar area, Hamadan, western Iran. Environ Geol 47(6):763–772

    Article  Google Scholar 

  • Jankowski J, Acworth RI, Shekarforoush S (1998) Reverse ion-exchange in deeply weathered porphyritic dacite fractured aquifer system, Yass. In New South Wales Australia. In: Arehart GB, Hulston JR (eds) Proceedings of 9th international symposium on water–rock interaction, Taupo, New Zealand

  • Kaasalainen H, Stefánsson A (2012) The chemistry of trace elements in surface geothermal waters and steam. Iceland Chem Geol 330:60–85

    Article  Google Scholar 

  • Kaasalainen H, Stefánsson A, Giroud N, Arnórsson S (2015) The geochemistry of trace elements in geothermal fluids, Iceland. Appl Geochem 62:207–223

    Article  Google Scholar 

  • Khademi B, Mesghali A (1971) Investigation and measurement of radium in Ramsar mineral water. Health Phys 21(3):464–465

    Google Scholar 

  • Khademi B, Tahsili A (1972) Environmental radioactivity in certain parts of Iran (No. CONF-720805-P1).

  • Khademi B, Sekhavat A, Parnianpour H (1975) Area of natural background radiation in the northern part of Iran. In International symposium on areas of high natural radioactivity, Brasil (Vol. 186).

  • Khademi B, Alemi AA, Nasseri A (1980) Transfer of radium from soil to plants in an area of high natural radioactivity in Ramsar. Iran Nat Radia Environ III I:600–610

    Google Scholar 

  • Khairy H, Janardhana MR, Etebari B (2013) Conceptualization of the hydrogeological system of southern Caspian Coastal Aquifer of Amol - Ghaemshahr Plain, Mazandaran Province. Iran Int J Earth Sci Eng 6(5):1222–1235

    Google Scholar 

  • Kharaka YK, Lico MS, Law LM (1982) Chemical geothermometers applied to formation waters, Gulf of Mexico and California basins. AAPG Bull 66(5):588–588

    Google Scholar 

  • Kloppmann W, Négrel P, Casanova J, Klinge H, Schelkes K, Guerrot C (2001) Halite dissolution derived brines in the vicinity of a Permian salt dome (N German Basin). Evidence from boron, strontium, oxygen, and hydrogen isotopes. Geochim Cosmochim Acta 65(22):4087–4101

    Article  Google Scholar 

  • Knoll GF (2010) Radiation detection and measurement. John Wiley and Sons Inc

    Google Scholar 

  • Kraemer TF, Reid DF (1984) The occurrence and behavior of radium in saline formation water of the US Gulf Coast region. Chem Geol 46(2):153–174

    Article  Google Scholar 

  • Labidi S, Mahjoubi H, Essafi F, Salah RB (2010) Natural radioactivity levels in mineral, therapeutic and spring waters in Tunisia. Radiat Phys Chem 79(12):1196–1202

    Article  Google Scholar 

  • Lauria DC, Almeida RMR, Sracek O (2004) Behavior of radium, thorium and uranium in groundwater near the Buena Lagoon in the Coastal Zone of the State of Rio de Janeiro. Brazil Environ Geol 47(1):11–19

    Article  Google Scholar 

  • Li Z, Wang G, Wang X, Wan L, Shi Z, Wanke H, Uahengo CI (2018) Groundwater quality and associated hydrogeochemical processes in Northwest Namibia. J Geochem Explor 186:202–214

    Article  Google Scholar 

  • Meinzer OE (1923) Outline of ground-water hydrology with definitions: US Geological Survey Water-Supply Paper 494, 71 p. 1927. Plants as indicators of ground water: US Geological Survey Water-Supply Paper. 577, 95.

  • Michel J (1990) Relationship of radium and radon with geological formations. Radon Radium Uranium Drinking Water 7:83–95

    Google Scholar 

  • Miller RL, Sutcliffe H (1985) Occurrence of natural radium-226 radioactivity in ground water of Sarasota County. US Geological Survey, Florida

    Google Scholar 

  • Morales-Arredondo JI, Esteller-Alberich MV, Hernández MA, Martínez-Florentino TAK (2018) Characterizing the hydrogeochemistry of two low-temperature thermal systems in Central Mexico. J Geochem Explor 185:93–104

    Article  Google Scholar 

  • Mukherjee S (2012) Applied mineralogy: applications in industry and environment. Springer

    Google Scholar 

  • Nair RRK, Rajan B, Akiba S, Jayalekshmi P, Nair MK, Gangadharan P, Kog T, Morishima H, Nakamura S, Sugahara T (2009) Background radiation and cancer incidence in Kerala India-Karanagappally cohort study. Health Phys 96(1):55–66

    Article  Google Scholar 

  • Nazari H, Shahidi A (2011) Tectonic of Iran, Alborz. Geological Survey and Mineral Exploration of Iran. Research Institute for Earth Science, p 97

    Google Scholar 

  • Nieva D, Nieva R (1987) Developments in geothermal energy in Mexico—part twelve. A cationic geothermometer for prospecting of geothermal resources. Heat Rec Syst CHP 7(3):243–258

    Article  Google Scholar 

  • Oden JH, Szabo Z (2016) Arsenic and radionuclide occurrence and relation to geochemistry in groundwater of the Gulf Coast Aquifer System in Houston. US Geological Survey

    Google Scholar 

  • Ollila AM, Newsom HE, Clark B III, Wiens RC, Cousin A, Blank JG, Gasnault O (2014) Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity’s ChemCam: early results for Gale crater from Bradbury landing site to Rocknest. J Geophys Res Planets 119(1):255–285

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations (No. 6-A43). US Geological Survey.

  • Paschoa AS (2000) More than forty years of studies of natural radioactivity in Brazil. Technology 7(2–3):193–212

    Google Scholar 

  • Pasvanoğlu S (2013) Hydrogeochemistry of thermal and mineralized waters in the Diyadin (Ağri) area, Eastern Turkey. Appl Geochem 38:70–81

    Article  Google Scholar 

  • Pervov AG, Andrianov AP, Efremov RV, Desyatov AV, Baranov AE (2003) A new solution for the Caspian Sea desalination: low-pressure membranes. Desalination 157(1–3):377–384

    Article  Google Scholar 

  • Piper AM (1953) A graphic procedure for the geo-chemical interpretation of water analysis. USGS groundwater (No. 12). note.

  • Pirajno F (2013) Hydrothermal processes and mineral systems. J Chem Inf Model 53(9):1689–1699

    Google Scholar 

  • Qureshi AA, Tariq S, Din KU, Manzoor S, Calligaris C, Waheed A (2014) Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan. J Radiat Res Appl Sci 7(4):438–447

    Article  Google Scholar 

  • Rosenberg YO, Metz V, Oren Y, Volkman Y, Ganor J (2011) Co-precipitation of radium in high ionic strength systems: 2. Kinetic and ionic strength effects. Geochim Cosmochim Acta 75(19):5403–5422

    Article  Google Scholar 

  • Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. Climate Change Continental Isotopic Rec 78:1–36

    Google Scholar 

  • Santaloia F, Zuffianò LE, Palladino G, Limoni PP, Liotta D, Minissale A, Polemio M (2016) Coastal thermal springs in a foreland setting: the Santa Cesarea Terme system (Italy). Geothermics 64:344–361

    Article  Google Scholar 

  • Saou A, Maza M, Seidel JL (2012) Hydrogeochemical processes associated with double salinization of water in an Algerian aquifer, carbonated and evaporitic. Pol J Environ Stud 21(4):1013–1024

    Google Scholar 

  • Saxena VK, Gupta ML (1985) Aquifer chemistry of thermal waters of the Godavari valley. India J Volcanol Geotherm Res 25(1–2):181–191

    Article  Google Scholar 

  • Schmidt K, Garbe-Schönberg D, Koschinsky A, Strauss H, Jost CL, Klevenz V, Königer P (2011) Fluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8 18′ S, Mid-Atlantic Ridge): constraints on fluid–rock interaction in heterogeneous lithosphere. Chem Geol 280(1–2):1–18

    Article  Google Scholar 

  • Shamsi A, Kazemi G (2014) A review of research dealing with isotope hydrology in Iran and the first Iranian meteoric water line. Geopersia 4(1):73–86

    Google Scholar 

  • Sheikhy Narany T, Ramli MF, Aris Zaharin A, Sulaiman WNA, Juahir H (2014) Fakharian K (2014) Identification of the hydrogeochemical processes in groundwater using classic integrated geochemical methods and geostatistical techniques, in Amol-Babol plain Iran. Scient World J 6:8

    Google Scholar 

  • Sherif MI, Lin J, Poghosyan A, Abouelmagd A, Sultan MI, Sturchio NC (2018) Geological and hydrogeochemical controls on radium isotopes in groundwater of the Sinai Peninsula. Egypt Sci Total Environ 613:877–885

    Article  Google Scholar 

  • Shorabi M (1990) Recent Radiological Studies of High Level Natural Radiation Areas of Ramsar. Proceeding of international conference on high levels of natural radiation; Ramsar, Iran. Vienna: IAEA 3–7.

  • Sohrabi M (2013) World high background natural radiation areas: need to protect public from radiation exposure. Radiat Meas 50:166–171

    Article  Google Scholar 

  • Sohrabi M, Babapouran M (2005) New public dose assessment from internal and external exposures in low-and elevated-level natural radiation areas of Ramsar. Iran In Internat Congress Series 1276:169–174

    Article  Google Scholar 

  • Sohrabi M, Esmaili AR (2002) New public dose assessment of elevated natural radiation areas of Ramsar (Iran) for epidemiological studies. Int Congr Ser 1225:15–24

    Article  Google Scholar 

  • Souza TA, Godoy JM, Godoy MLD, Moreira I, Carvalho ZL, Salomão MSM, Rezende CE (2010) Use of multitracers for the study of water mixing in the Paraíba do Sul River estuary. J Environ Radioact 101(7):564–570

    Article  Google Scholar 

  • Stackelberg PE, Szabo Z, Jurgens BC (2018) Radium mobility and the age of groundwater in public-drinking-water supplies from the Cambrian-Ordovician aquifer system, north-central USA. Appl Geochem 89:34–48

    Article  Google Scholar 

  • Stampfli GM (2000) Tethyan oceans. In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonics and Magmatism in Turkey and Surrounding Area, 173. Geological Society of London, Special Publication, pp 163–185

    Google Scholar 

  • Sturchio NC, Banner JL, Binz CM, Heraty LB, Musgrove M (2001) Radium geochemistry of ground waters in Paleozoic carbonate aquifers, midcontinent, USA. Appl Geochem 16(1):109–122

    Article  Google Scholar 

  • Szabo Z, DePaul VT, Kraemer TF, Parsa B (2005) Occurrence of radium-224, radium-226, and radium-228 in water of the unconfined Kirkwood-Cohansey aquifer system, southern New Jersey. U. S Geological Survey

    Book  Google Scholar 

  • Tabar E, Kumru MN, Ichedef M, Saç MM (2013) Radioactivity level and the measurement of soil gas radon concentration in Dikili geothermal area. Turkey Int J Radiat Res 11(4):253–261

    Google Scholar 

  • Tao Z, Akiba S, Zha Y, Sun Q, Zou j, (2012) Cancer and non-cancer mortality among inhabitants in the high background radiation area of Yangjiang, China (1979–1998). Health Phys 102(2):173–181

    Article  Google Scholar 

  • Thivya C, Chidambaram S, Keesari T, Prasanna MV, Thilagavathi R, Adithya VS, Singaraja C (2016) Lithological and hydrochemical controls on distribution and speciation of uranium in groundwaters of hard-rock granitic aquifers of Madurai District, Tamil Nadu (India). Environ Geochem Health 38(2):497–509

    Article  Google Scholar 

  • Todd DK, Mays LW (2005) Groundwater hydrology. Welly Inte

    Google Scholar 

  • Tuzhilkin VS, Katunin DN, Nalbandov YR (2005) Natural chemistry of Caspian Sea waters. In The Caspian Sea Environment. Springer, Berlin

    Google Scholar 

  • UNSCEAR (2000) Report sources and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes.

  • Vahdati Daneshmand F (2004) Geological map of Marzanabad (1/100000). Geological Survey of Iran, Tehran

    Google Scholar 

  • Vahdati Daneshmand F, Karimkhani A, Karimi H (2001) Geological map of Chalus (sheet 6263), scale 1:100000. Geol Surv Iran 3:10

    Google Scholar 

  • Vengosh A, De Lange GJ, Starinsky A (1998) Boron isotope and geochemical evidence for the origin of Urania and Bannock brines at the eastern Mediterranean: effect of water-rock interactions. Geochim Cosmochim Acta 62(19–20):3221–3228

    Article  Google Scholar 

  • Villanueva-Estrada RE, Prol-Ledesma RM, Rodríguez-Díaz AA, Canet C, Armienta MA (2013) Arsenic in hot springs of Bahía Concepción, Baja California Peninsula, México. Chem Geol 348:27–36

    Article  Google Scholar 

  • Vinson DS, Vengosh A, Hirschfeld D, Dwyer GS (2009) Relationships between radium and radon occurrence and hydrochemistry in fresh groundwater from fractured crystalline rocks, North Carolina (USA). Chem Geol 260(3–4):159–171

    Article  Google Scholar 

  • Vinson DS, Tagma T, Bouchaou L, Dwyer GS, Warner NR, Vengosh A (2013) Occurrence and mobilization of radium in fresh to saline coastal groundwater inferred from geochemical and isotopic tracers (Sr, S, O, H, Ra, Rn). Appl Geochem 38:161–175

    Article  Google Scholar 

  • Woitischek J, Dietzel M, Inguaggiato C, Böttcher ME, Leis A, Cruz JV, Gehre M (2017) Characterisation and origin of hydrothermal waters at São Miguel (Azores) inferred by chemical and isotopic composition. J Volcanol Geotherm Res 346:104–117

    Article  Google Scholar 

  • Wrage J, Tardani D, Reich M, Daniele L, Arancibia G, Cembrano J, Pérez-Moreno R (2017) Geochemistry of thermal waters in the Southern Volcanic Zone, Chile-Implications for structural controls on geothermal fluid composition. Chem Geol 466:545–561

    Article  Google Scholar 

  • Yuan J, Xu F, Deng G, Tang Y, Li P (2017) Hydrogeochemistry of shallow groundwater in a karst aquifer system of Bijie city. Guizhou Prov Water 9(8):625

    Google Scholar 

  • Zanchi A, Berra F, Mattei M, Ghassemi M, Sabouri J (2006) Inversion tectonics in central Alborz. Iran J Struct Geol 28:2023–2037

    Article  Google Scholar 

  • Zarei M, Raeisi E, Merkel BJ, Kummer NA (2013) Identifying sources of salinization using hydrochemical and isotopic techniques, Konarsiah. Iran Environ Earth Sci 70(2):587–604

    Article  Google Scholar 

  • Zukin JG, Hammond DE, Teh-Lung K, Elders WA (1987) Uranium-thorium series radionuclides in brines and reservoir rocks from two deep geothermal boreholes in the Salton Sea Geothermal Field, southeastern California. Geochim Cosmochim Acta 51(10):2719–2731

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this paper would like to express their gratitude to Radiation Research Center of Shiraz University and Nuclear Science and Technology Research Institute for financial and logistic supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farideh Amini Birami or Farid Moore.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2391 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini Birami, F., Moore, F., Kardan, M. et al. Source of 226Ra in Ramsar spring water, Iran: implication of water–rock interaction and stable isotopes. Environ Earth Sci 80, 280 (2021). https://doi.org/10.1007/s12665-021-09527-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09527-4

Keywords

Navigation