Skip to main content
Log in

Quasiconformal Harmonic Mappings Between the Unit Ball and a Spatial Domain with C1,α Boundary

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We prove the following. If f is a harmonic quasiconformal mapping between the unit ball in \(\mathbb {R}^{n}\) and a spatial domain with C1,α boundary, then f is Lipschitz continuous in B. This generalizes some known results for n = 2 and improves some others in higher dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arsenović, M., Božin, V., Manojlović, V.: Moduli of continuity of harmonic quasiregular mappings in Bn. Potential Anal 34, 283–291 (2011)

    Article  MathSciNet  Google Scholar 

  2. Astala, K., Manojlović, V.: On Pavlovic theorem in space. Potential Anal. 43(3), 361–370 (2015)

    Article  MathSciNet  Google Scholar 

  3. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Springer-Verlag, New York (2000)

    MATH  Google Scholar 

  4. Božin, V., Mateljević, M.: Quasiconformal and HQC mappings between Lyapunov Jordan domains. Ann. Sc. Norm. Super. Pisa, Cl. Sci. pp. 23(5). https://doi.org/10.2422/2036-2145.201708∖_013

  5. Fehlmann, R., Vuorinen, M.: Mori’s theorem for n-dimensional quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 13(1), 111–124 (1988)

    Article  MathSciNet  Google Scholar 

  6. Gehring, F.W., Martio, O.: Lipschitz classes and quasiconformal mappings. Ann. Acad. Sci. Fenn., Ser. A I, Math. 10, 203–219 (1985)

    Article  MathSciNet  Google Scholar 

  7. Goluzin, G.M.: Geometric theory of functions of a complex variable. Translations of Mathematical Monographs. Vol. 26. Providence, R. I.:American Mathematical Society (AMS). vi, 676 pp. (1969)

  8. Kalaj, D.: Quasiconformal harmonic mapping between Jordan domains. Math. Z. 260(2), 237–252 (2008)

    Article  MathSciNet  Google Scholar 

  9. Kalaj, D.: Quasiconformal harmonic mappings between Dini’s smooth Jordan domains. Pac. J. Math. 276, 213–228 (2015)

    Article  MathSciNet  Google Scholar 

  10. Kalaj, D.: A priori estimate of gradient of a solution to certain differential inequality and quasiconformal mappings. J. d’Analyse Math. 119, 63–88 (2013)

    Article  MathSciNet  Google Scholar 

  11. Kalaj, D.: On boundary correspondences under quasiconformal harmonic mappings between smooth Jordan domains. Math. Nachr. 285(2-3), 283–294 (2012)

    Article  MathSciNet  Google Scholar 

  12. Kalaj, D.: Harmonic mappings and distance function. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 10(3), 669–681 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Kalaj, D.: Harmonic quasiconformal mappings betwen C1 smooth Jordan domains. arXiv:2003.03665. To appear in Revista Matemática Iberoamericana (2020)

  14. Kalaj, D., Lamel, B.: Minimisers and Kellogg’s theorem. Math. Ann. 377(3), 1643–1672 (2020)

    Article  MathSciNet  Google Scholar 

  15. Kalaj, D., Mateljević, M.: (K, K’)-quasiconformal harmonic mappings. Potential Anal. 36(1), 117–135 (2012)

    Article  MathSciNet  Google Scholar 

  16. Kalaj, D., Pavlović, M.: Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane. Ann. Acad. Sci. Fenn., Math. 30(1), 159–165 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Kalaj, D., Zlatičanin, A.: Quasiconformal mappings with controlled Laplacian and Hölder continuity. Ann. Acad. Sci. Fenn., Math. 44(2), 797–803 (2019)

    Article  MathSciNet  Google Scholar 

  18. Manojlović, V.: Bi-Lipschicity of quasiconformal harmonic mappings in the plane. Filomat 23(1), 85–89 (2009)

    Article  MathSciNet  Google Scholar 

  19. Martio, O.: On harmonic quasiconformal mappings. Ann. Acad. Sci. Fenn., Ser. A I 425, 3–10 (1968)

    MathSciNet  MATH  Google Scholar 

  20. Martio, O., Näkki, R.: Hölder continuity and quasiconformal mappings. J. Lond. Math. Soc. (2) 44(2), 339–350 (1991)

    Article  Google Scholar 

  21. Mateljević, M., Vuorinen, M.: On harmonic quasiconformal quasi-isometries. J. Inequal. Appl 2010, 19 (2010). Article ID 178732

    Article  MathSciNet  Google Scholar 

  22. Nitsche, J.C.C.: The boundary behavior of minimal surfaces. Kellogg’s theorem and branch points on the boundary. Invent. Math. 8, 313–333 (1969)

    Article  MathSciNet  Google Scholar 

  23. Partyka, D., Sakan, K.: On bi-Lipschitz type inequalities for quasiconformal harmonic mappings. Ann. Acad. Sci. Fenn. Math. 32, 579–594 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Partyka, D., Sakan, K.I., Zhu, J.-F.: Quasiconformal harmonic mappings with the convex holomorphic part. Ann. Acad. Sci. Fenn., Math. 43(1), 401–418 (2018). erratum ibid. 43, No. 2, 1085–1086 (2018)

    Article  MathSciNet  Google Scholar 

  25. Pavlović, M.: Lipschitz conditions on the modulus of a harmonic function. Rev. Mat. Iberoam. 23(3), 831–845 (2007)

    Article  MathSciNet  Google Scholar 

  26. Pavlović, M.: Boundary correspondence under harmonic quasiconformal homeomorfisms of the unit disc. Ann. Acad. Sci. Fenn. 27, 365–372 (2002)

    MATH  Google Scholar 

  27. Väisälä, J.: Lectures on n-dimensional Quasiconformal Mappings Lecture notes Math., vol. 229. Srpinger-Verlag, Berlin-New York (1971)

    Book  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referee for a number of corrections that have made this paper better.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kalaj.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gjokaj, A., Kalaj, D. Quasiconformal Harmonic Mappings Between the Unit Ball and a Spatial Domain with C1,α Boundary. Potential Anal 57, 367–377 (2022). https://doi.org/10.1007/s11118-021-09919-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-021-09919-y

Keywords

Mathematics Subject Classification (2010)

Navigation