Skip to main content
Log in

Transcriptome sequencing of wild soybean revealed gene expression dynamics under low nitrogen stress

  • Plant Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Nitrogen is one of the essential elements for plant growth. Wild soybeans (Glycine soja) have strong abilities to survive in harsh and barren environments, and hence become ideal plant model for studying plant adaptability to low nitrogen (LN) conditions. In this study, we analyzed and compared the transcriptomes of wild soybean subjected to LN treatments. We totally identified 1095 (681 up and 414 down) and 5490 (2998 up and 2492 down) differentially expressed genes (DEGs) in the aerial parts (leaf and stem, LS) and roots, respectively. Gene ontology classification analysis revealed that the categories related to LN stress (including oxidation reduction, transcriptional regulation, membrane, and protein phosphorylation) were highly enriched among DEGs. In addition, a total of 784 transcription factor (TF) and 84 transporter protein (TP) genes were determined in LS DEGs, of which some TF genes (NAC1, NAC35, ZFP1, CIM1, and WRKY25) and TP genes like NRT2.5 (nitrate transporter) and ABCC12 (ABC transporter) were widely upregulated under LN stress. Nevertheless, a total of 3859 TF and 370 TP genes were identified in root DEGs, of which some TF genes (NAC6, NAC14, MYB29, MYB92, bZIP62, bZIP72, WRKY60, WRKY58) and TP genes like NRT2.4 and HAK5 (potassium transporter) were upregulated under LN stress. These findings suggest that the identified DEGs may play vital roles in plant responses to LN stress, providing important genetic resources for further functional dissection of plant molecular mechanisms to LN stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

CK:

control

LS:

leaf and stem

LN:

low nitrogen

DEG:

differentially expressed gene

TP:

transporter protein

TF:

transcription factor

NRT:

nitrate transporter

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bräutigam A, Gowik U (2010) What can next generation sequencing do for you? Next generation sequencing as a valuable tool in plant research. Plant Biology 12:831–841

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Jiang J, Li HY, Liu GF (2012) The salt-responsive transcriptome of Populus simonii × Populus nigra via DGE. Gene 504:203–212

    Article  CAS  PubMed  Google Scholar 

  • Drew MC, Saker LR, Ashely TW (1973) Nutrient supply and the growth of the seminal root system inbarely. J Exp Bot 24(6):1189–1202

    Article  CAS  Google Scholar 

  • DuanMu HZ, Wang Y, Bai X, Cheng SF, Deyholos MK, Wong GK-S, Zhu D, Li R, Yu Y, Cao L, Chen C, Zhu YM (2015) Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress. Funct Integr Genomic 15:651–660

    Article  CAS  Google Scholar 

  • Elbourne LD, Tetu SG, Hassan KA, Paulsen IT (2017) TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res 45:320–324

    Article  CAS  Google Scholar 

  • Gao QS, Zhang D, Xu L, Xu CW (2011) Systematic identification of rice ABC1 gene family and its response to abiotic stress. Rice Sci 18(3):167–177

    Article  Google Scholar 

  • Ge Y, Li Y, Zhu YM, Bai X, Lv DK, Guo DJ, Ji W, Cai H (2010) Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol 10(1):153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gómez I, Pedreño JN, Moral R, Iborra MR, Palacios G, Mataix J (1996) Salinity and nitrogen fertilization affecting the macronutrient content and yield of sweet pepper plants. J Plant Nutr 19(2):353–359

    Article  Google Scholar 

  • Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hikosaka K (2004) Interspecific difference in the photosynthesis–nitrogen relationship: patterns, physiological causes, and ecological importance. J Plant Res 117:481–494

    Article  PubMed  Google Scholar 

  • Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH, Zhang QF, Xiong LZ (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. PNAS 103:2987–2992

    Article  Google Scholar 

  • Jensen LJ, Bork P (2010) Ontologies in quantitative biology: a basis for comparison, integration, and discovery. PLoS Biol 8(5):e1000374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin JP, Tian F, Yang DC, Meng YQ, Kong L, Luo JC, Gao G (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:1040–1045

    Article  CAS  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:480–484

    Article  CAS  Google Scholar 

  • Kim DY, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140(3):922–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, Phillippy AM (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30(7):693–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen PB, Cancel J, Rounds M, Ochoa V (2007) Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta 225(6):1447–1458

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Ding GD, Yang NM, White PJ, Ye XS, Cai HM, Lu JW, Shi L, Xu F (2019) Comparative genome and transcriptome analysis unravels key factors of nitrogen use efficiency in Brassica napus L. Plant Cell Environ 43:712–731

    Article  PubMed  CAS  Google Scholar 

  • Liu JT, Zhou YL, Luo CX, Xiang Y, An LZ (2016) De novo transcriptome sequencing of desert herbaceous Achnatherum splendens (Achnatherum) seedlings and identification of salt tolerance genes. Genes-Basel 7(4):1–13

    CAS  Google Scholar 

  • Liu SY, Fukumoto T, Gena P, Feng P, Sun Q, Li Q, Matsumoto T, Kaneko T, Zhang H, Zhang Y, Zhong SH, Zeng WZ, Katsuhara M, Kitagawa Y, Wang AX, Calamita G, Ding XD (2020a) Ectopic expression of a rice plasma membrane intrinsic protein (OsPIP1;3) promotes plant growth and water uptake. Plant J 102:779–796

    Article  CAS  PubMed  Google Scholar 

  • Liu DP, Li MX, Liu Y, Shi LX (2020b) Integration of the metabolome and transcriptome reveals the resistance mechanism to low nitrogen in wild soybean seedling roots. Environ Exp Bot 175

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆Ct method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Mao XZ, Cai T, Olyarchuk JG, Wei LP (2005) Automated genome annotation and pathway identification using the KEGG orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Nacry P, Bouguyon E, Gojon A (2013) Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370:1–29

    Article  CAS  Google Scholar 

  • Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozali K (2007) Function analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  CAS  PubMed  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman H, Jagadeeshselvam N, Valarmathi R, Sasikala R, Senthil N, Sudhakar D, Robin S, Muthurajan R (2014) Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing. Plant Mol Biol 85(4-5):485–503

    Article  CAS  PubMed  Google Scholar 

  • Schuster SC (2008) Next-generation sequencing transforms today's biology. Nat Methods 5(1):16

    Article  CAS  PubMed  Google Scholar 

  • Shortemeyer M, Feil B, Stamp P (1993) Root morphology and nitrogen uptake of maize simultaneously supplied with ammonium and nitrate in a split-root system. Ann Bot-London 72(2):107–115

    Article  Google Scholar 

  • Sinha SK, Sevanthi VA, Chaudhary S, Tyagi P, Venkadesan S, Rani M, Mandal P (2018) Transcriptome Analysis of Two Rice Varieties Contrasting for Nitrogen Use Efficiency under Chronic N Starvation Reveals Differences in Chloroplast and Starch Metabolism-Related Genes. Genes 9(4):206

    Article  PubMed Central  CAS  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–U174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu GS, Carville JS, Spalding EP (2016) ABCB19-mediated polar auxin transport modulates Arabidopsis hypocotyl elongation and the endoreplication variant of the cell cycle. Plant J 85(2):209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Hu YN, Huo PJ, Zhang Q, Chen X, Zhang ZW (2017) Transcriptome analysis of hexaploid hulless Oat in response to salinity stress. PLoS One 12(2):e0171451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu ZC, Peters RJ, Weirather J, Luo HM, Liao BS, Zhang X, Zhu YJ, Ji AJ, Zhang B, Hu SN, An KF, Song JY, Chen SL (2015) Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J 82(6):951–961

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S AFR J BOT 76:167–179

    Article  CAS  Google Scholar 

  • Yamaguchi T, Hamamoto S, Uozumi N (2013) Sodium transport system in plant cells. Front Plant Sci 4:410

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang LF, Jin YH, Huang W, Sun Q, Liu F, Huang XZ (2018) Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress. BMC Genomics 19:717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):R14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang LC, Zhao GY, Jia JZ, Liu X, Kong XY (2012) Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress. J Exp Bot 63:203–214

    Article  PubMed  CAS  Google Scholar 

  • Zhang JY, Wang Y, Zhao YF, Zhang Y, Zhang JY, Ma HR, Han YZ (2020) Transcriptome analysis reveals Nitrogen deficiency induced alterations in leaf and root of three cultivars of potato (Solanum tuberosum L.). PLoS ONE 15(10):e0240662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503

    Article  CAS  PubMed  Google Scholar 

  • Zhou AM, Ma HP, Liu EH, Jiang TT, Feng S, Gong SF, Wang JG (2017) Transcriptome sequencing of Dianthus spiculifolius and analysis of the genes involved in responses to combined cold and drought stress. Int J Mol Sci 18:849

    Article  PubMed Central  CAS  Google Scholar 

  • Zhou AM, Sun HW, Dai SY, Feng S, Zhang JZ, Gong SF, Wang JG (2019) Identification of transcription factors involved in the regulation of flowering in Adonis Amurensis through combined RNA-seq transcriptomics and iTRAQ proteomics. Genes 10(4):305

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Lianchuan Biological Company (Hangzhou, China) for Illumina sequencing and raw data analysis.

Funding

This work was financially supported by National Natural Science Foundation of China (31670272 to X.D.), Natural Science Foundation of Heilongjiang Province (C2017014 to X.D.), and the Starting Fund of Northeast Agricultural University (to X.D.).

Author information

Authors and Affiliations

Authors

Contributions

QS drafted the manuscript. QS and HRL analyzed the data. HRL and QZ performed the phenotypic evaluation. DZ, JC, and JLX helped to coordinate the study. XDD and QL participated in the design of the study and revised the manuscript. All authors have read and approved the final manuscript. 

Corresponding authors

Correspondence to Xiaodong Ding or Qiang Li.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by: Izabela Pawłowicz

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(RAR 4759 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Lu, H., Zhang, Q. et al. Transcriptome sequencing of wild soybean revealed gene expression dynamics under low nitrogen stress. J Appl Genetics 62, 389–404 (2021). https://doi.org/10.1007/s13353-021-00628-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-021-00628-1

Keywords

Navigation