Skip to main content
Log in

The Formation of Native Disulfide Bonds: Treading a Fine Line in Protein Folding

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The folding of proteins that contain disulfide bonds is termed oxidative protein folding. It involves a chemical reaction resulting in the formation of disulfide bonds and a physical conformational folding reaction that promotes the formation of the native structure. While the presence of disulfide bonds significantly increases the complexity of the folding landscape, it is generally recognized that native disulfide bonds help funnel the trajectory towards the final folded form. Here, we review the role of disulfide bonds in oxidative protein folding and argue that even structure-inducing native disulfide bond formation treads a fine line in the regeneration of disulfide-bond-containing proteins. The translation of this observation to protein misfolding related disorders is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gilbert HF (1990) Molecular and cellular aspects of thiol-disulfide exchange. Adv Enzymol Relat Areas Mol Biol 63:69–172. https://doi.org/10.1002/9780470123096.ch2

    Article  CAS  PubMed  Google Scholar 

  2. Narayan M, Welker E, Wedemeyer WJ, Scheraga HA (2000) Oxidative folding of proteins. Acc Chem Res 33:805–812

    Article  CAS  Google Scholar 

  3. Creighton TE (1997) Protein folding coupled to disulphide bond formation. Biol Chem 378:731–744

    CAS  PubMed  Google Scholar 

  4. Wedemeyer WJ, Scheraga HA (2001) Protein folding: overview of pathways. Encyclopedia of life sciences. Wiley, Chichester

    Google Scholar 

  5. Welker E, Narayan M, Wedemeyer WJ, Scheraga HA (2001) Structural determinants of oxidative folding in proteins. Proc Natl Acad Sci USA 98:2312–2316

    Article  CAS  Google Scholar 

  6. Wedemeyer WJ, Welker E, Narayan M, Scheraga HA (2000) Disulfide bonds and protein folding. Biochemistry 39:4207–4216

    Article  CAS  Google Scholar 

  7. Welker E, Wedemeyer WJ, Narayan M, Scheraga HA (2001) Coupling of conformational folding and disulfide-bond reactions in oxidative folding of proteins. Biochemistry 40:9059–9064

    Article  CAS  Google Scholar 

  8. Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes: mechanisms and consequences: mechanisms and consequences. J Cell Biol 164:341–346

    Article  CAS  Google Scholar 

  9. Hudson DA, Gannon SA, Thorpe C (2015) Oxidative protein folding: from thiol-disulfide exchange reactions to the redox poise of the endoplasmic reticulum. Free Radic Biol Med 80:171–182

    Article  CAS  Google Scholar 

  10. Woycechowsky KJ, Raines RT (2000) Native disulfide bond formation in proteins. Curr Opin Chem Biol 4:533–539

    Article  CAS  Google Scholar 

  11. Bardwell JC, Lee JO, Jander G, Martin N, Belin D, Beckwith J (1993) A pathway for disulfide bond formation in vivo. Proc Natl Acad Sci USA 90:1038–1042

    Article  CAS  Google Scholar 

  12. Mamathambika BS, Bardwell JC (2008) Disulfide-linked protein folding pathways. Annu Rev Cell Dev Biol 24:211–235

    Article  CAS  Google Scholar 

  13. Rothwarf DM, Scheraga HA (1993) Regeneration of bovine pancreatic ribonuclease A. 1. Steady-state distribution. Biochemistry 32:2671–2679

    Article  CAS  Google Scholar 

  14. Rothwarf DM, Scheraga HA (1993) Regeneration of bovine pancreatic ribonuclease A. 2. Kinetics of regeneration. Biochemistry 32:2680–2689

    Article  CAS  Google Scholar 

  15. Rothwarf DM, Scheraga HA (1993) Regeneration of bovine pancreatic ribonuclease A. 3. Dependence on the nature of the redox reagent. Biochemistry 32:2690–2697

    Article  CAS  Google Scholar 

  16. Rothwarf DM, Scheraga HA (1993) Regeneration of bovine pancreatic ribonuclease A. 4. Temperature dependence of the regeneration rate. Biochemistry 32:2698–2703

    Article  CAS  Google Scholar 

  17. Rothwarf DM, Li YJ, Scheraga HA (1998) Regeneration of bovine pancreatic ribonuclease A: identification of two nativelike three-disulfide intermediates involved in separate pathways. Biochemistry 37:3760–3766

    Article  CAS  Google Scholar 

  18. Rothwarf DM, Li YJ, Scheraga HA (1998) Regeneration of bovine pancreatic ribonuclease A: detailed kinetic analysis of two independent folding pathways. Biochemistry 37:3767–3776

    Article  CAS  Google Scholar 

  19. Xu X, Rothwarf DM, Scheraga HA (1996) Nonrandom distribution of the one-disulfide intermediates in the regeneration of ribonuclease A. Biochemistry 35:6406–6417

    Article  CAS  Google Scholar 

  20. Volles MJ, Xu X, Scheraga HA (1999) Distribution of disulfide bonds in the two-disulfide intermediates in the regeneration of bovine pancreatic ribonuclease A: further insights into the folding process. Biochemistry 38:7284–7293

    Article  CAS  Google Scholar 

  21. Welker E, Narayan M, Volles MJ, Scheraga HA (1999) Two new structured intermediates in the oxidative folding of RNase A. FEBS Lett 460:477–479

    Article  CAS  Google Scholar 

  22. Narayan M, Welker E, Scheraga HA (2001) Development of a novel method to study the rate-determining step during protein regeneration: application to the oxidative folding of RNase A at low temperature reveals BPTI-like kinetic traps. J Am Chem Soc 123:2909–2910

    Article  CAS  Google Scholar 

  23. Weissman JS, Kim PS (1991) Reexamination of the folding of BPTI: predominance of native intermediates. Science 253:1386–1393

    Article  CAS  Google Scholar 

  24. Creighton TE (1992) The disulfide folding pathway of BPTI. Science 256:111–114

    Article  CAS  Google Scholar 

  25. Roux P, Ruoppolo M, Chaffotte AF, Goldberg ME (1999) Comparison of the kinetics of S-S bond, secondary structure, and active site formation during refolding of reduced denatured hen egg white lysozyme. Protein Sci 8:2751–2760

    Article  CAS  Google Scholar 

  26. Patel AS, Lees WJ (2012) Oxidative folding of lysozyme with aromatic dithiols, and aliphatic and aromatic monothiols. Bioorg Med Chem 20:1020–1028

    Article  CAS  Google Scholar 

  27. Arai K, Shibagaki W, Shinozaki R, Iwaoka M (2013) Reinvestigation of the oxidative folding pathways of hen egg white lysozyme: Switching of the major pathways by temperature control. Int J Mol Sci 14:13194–13212

    Article  Google Scholar 

  28. Narayan M (2020) Revisiting the formation of a native disulfide bond: consequences for protein regeneration and beyond. Molecules 25:5337. https://doi.org/10.3390/molecules25225337

    Article  CAS  PubMed Central  Google Scholar 

  29. Chang JY, Ventura S (2011) Folding of disulfide proteins. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  30. Chakravarty S, Varadarajan R (2000) Elucidation of determinants of protein stability through genome sequence analysis. FEBS Lett 470:65–69

    Article  CAS  Google Scholar 

  31. Patel S, Indu S, Ramakrishnan C, Varadarajan R (2013) Protein disulfide analysis and design. Biomolecular forms and functions. World Scientific/Indian Inst of Science, Bangalore, pp 296–311

    Chapter  Google Scholar 

  32. Schulte L, Mao J, Reitz J, Sreeramulu S, Kudlinzki D, Hodirnau VV, Meier-Credo J, Saxena K, Buhr F, Langer JD et al (2020) Cysteine oxidation and disulfide formation in the ribosomal exit tunnel. Nat Commun 2020:11. https://doi.org/10.1038/s41467-020-19372-x

    Article  CAS  Google Scholar 

  33. Mossuto MF (2013) Disulfide bonding in neurodegenerative misfolding diseases. Int J Cell Biol 2013:318319

    Article  Google Scholar 

  34. Narayan M (2012) Disulfide bonds: protein folding and subcellular protein trafficking: disulfide bonds. FEBS J 279:2272–2282

    Article  CAS  Google Scholar 

  35. Narayan M (2011) The case of oxidative folding of ribonuclease A: factors impacting fold maturation of ER-processed proteins. Folding of disulfide proteins. Springer, New York, pp 23–42

    Chapter  Google Scholar 

  36. Cao P, Abedini A, Raleigh DP (2013) Aggregation of islet amyloid polypeptide: from physical chemistry to cell biology. Curr Opin Struct Biol 23:82–89

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Mr. Gyan M. Narayan for assistance with the References.

Funding

MN acknowledges support from NIH 1SC3 GM111200 01A1 for this work. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Contributions

MN conceived the topic and wrote the manuscript.

Corresponding author

Correspondence to Mahesh Narayan.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayan, M. The Formation of Native Disulfide Bonds: Treading a Fine Line in Protein Folding. Protein J 40, 134–139 (2021). https://doi.org/10.1007/s10930-021-09976-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-021-09976-7

Keywords

Navigation