Skip to main content
Log in

Determination of the protection period of fungicides used for control of Sclerotinia stem rot in soybean through bioassay and chromatography

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

A Correction to this article was published on 19 February 2021

This article has been updated

Abstract

In Brazil, Sclerotinia stem rot (SSR) control in soybean depends primarily on application of the fungicides carbendazim, fluazinam, and procymidone. While these fungicides can provide effective control of the disease, their protection period, which is crucial for timing their optimal application, is poorly understood. In the present study, the protection period of carbendazim, fluazinam and procymidone was determined using a detached leaf bioassay (DLB) and chromatography. For the DLB, soybean plants were treated twice with each fungicide with or without mineral oil as adjuvant; leaves were collected at two or three-day intervals from 11 to 23 days, inoculated with Sclerotinia sclerotiorum mycelium, and the necrotic area was assessed 48 h after inoculation. For the chromatography test, each fungicide was applied and the leaves were collected every two days after treatment for 14 days. Fungicide residue concentration in tissue was determined according to a modified version of the quick, easy, cheap, effective, rugged and safe (QuEChERS) method. At 5, 7, and 9 days after the first application, fluazinam, carbendazim and procymidone, respectively, had no protective effect even when applied with mineral oil. Greater control efficacy was achieved after a second application. Fluazinam showed protective activity up to 4 days while carbendazim and procymidone showed about 10 days. The mineral oil only enhanced protection activity of procymidone in the second application. The analytical chemical separation indicated that the relative concentration of fluazinam decreased at a faster rate than that of carbendazim and procymidone. At day 14, the concentration of carbendazim and procymidone decreased from 34.97 to 9.39 mg kg−1, and 58.98 to 11.22 mg kg−1, respectively, suggesting that 10–14 days represent the approximate timing in spacing two consecutive applications. The knowledge of the protection period of these fungicides sets the basis to improving their timing of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  • Abawi, G. S., Polach, F. J., & Molin, W. T. (1975). Infection of bean by ascospores of Whetzelinia sclerotiorum. Phytopathology, 65(6), 673–678.

    Google Scholar 

  • Abdelgaleil, S. A. M., Abdel-Aziz, S. M. I., El-Bakry, A. M., Sammour, E. A., & Kassem, N. F. (2015). Use of tank-mix adjuvants to improve effectiveness and persistence of chlorpyrifos and cyhalothrin formulations. Journal of Agricultural Science Technology, 17(1), 1539–1549.

    Google Scholar 

  • Adams, P., & Ayers, W. A. (1979). Ecology of Sclerotinia species. Phytopathology, 69, 896–898.

    Google Scholar 

  • Anastassiades, M., Tasdelen, B., Scherbaum, E., & Stajnbaher, D. (2007). Recent developments in QuEChERS methodology for pesticide multiresidue analysis. In H. Ohkawa, H. Miyagawa, & P. W. Lee (Eds.), Pesticide chemistry: Crop protection, public health, environmental safety. Weinheim: Wiley-VCH.

    Google Scholar 

  • Angioni, A., Real, A. A., Russo, M., Melis, M., Cabitza, F., & Cabras, P. (2003). Triazole fungicide degradation in peaches in the field and in model system. Food Additives & Contaminants, 20(4), 368–347.

    CAS  Google Scholar 

  • Augusto, J., & Brenneman, T. B. (2012). Assessing systemicity of peanut fungicides through bioassay of plant tissues with Sclerotium rolfsii. Plant Disease, 96(3), 330–337.

    CAS  PubMed  Google Scholar 

  • Barro, J., Meyer, M. C., Godoy, C., Dias, A. R., Utiamada, C., Jaccoud-Filho, D. D. S., et al. (2019). Performance and profitability of fungicides for managing soybean white mold: A 10-year summary of cooperative trials. Plant Disease, 103(9), 2212–2220.

    CAS  PubMed  Google Scholar 

  • Berger-Neto, A., Jaccoud-Filho, D. S., Wutzki, C. R., Tullio, H. E., Pierre, M. L. C., & Manfron, F. (2017). Effect of spray droplet size, spray volume and fungicide on the control of white mold in soybeans. Crop Protection, 92, 190–197.

    Google Scholar 

  • Boland, G. J., & Hall, R. (1994). Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 16(2), 93–108.

    Google Scholar 

  • Bolton, M. D., Thomma, B. P. H. J., & Nelson, B. D. (2006). Sclerotinia sclerotiorum (lib) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 7, 1–16.

    CAS  PubMed  Google Scholar 

  • Caffi, T., & Rossi, V. (2018). Fungicide models are key components of multiple modelling approaches for decision-making in crop protection. Phytopathologia Mediterranea, 57(1), 153–169. https://doi.org/10.14601/Phytopathol_Mediterr-22471.

    Article  Google Scholar 

  • Chen, C.-J., Yu, J.-J., Bi, C.-W., Zhang, Y.-N., Xu, J.-Q., Wang, J.-X., & Zhou, M.-G. (2009). Mutations in a β-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides. Phytopathology, 99(12), 1403–1411.

    CAS  PubMed  Google Scholar 

  • Clarkson, J. P., Fawcett, L., Anthony, S. G., & Young, C. (2014). A model for Sclerotinia sclerotiorum infection and disease development in lettuce, based on the effects of temperature, relative humidity and ascospore density. PLoS One, 9(4), e94049.

    PubMed  PubMed Central  Google Scholar 

  • Conab - Companhia Nacional de Abastecimento. 2020. Acompanhamento da safra brasileira de grãos, v. 7 – safra 2019/20, N. 12– Décimo segundo levantamento/Setembro 2020. Online publication. Available on: https://www.conab.gov.br/info-agro/safras/graos. Accessed 14 December 2020.

  • Davidse, L. C. (1986). Benzimidazole fungicides: Mechanism of action and biological impact. Annual Review of Phytopathology, 24(1), 43–65.

    CAS  Google Scholar 

  • Fonseca, A. E., Nunes, B. D. M., & Júnior, J. B. F. (2016). Tenacity and persistence of copper fungicides in citrus seedlings under simulated rainfall. Revista Caatinga, 29(3), 677–684.

    Google Scholar 

  • Gent, D. H., Schwartz, H. F., & Nissen, S. J. (2003). Effect of commercial adjuvants on vegetable crop fungicide coverage, absorption, and efficacy. Plant Disease, 87(5), 591–597.

    CAS  PubMed  Google Scholar 

  • Grau, C. R., & Hartman, G. L. (2015). Sclerotinia stem rot. In G. L. Hartman, J. C. Rupe, E. J. Sikora, L. L. Domier, J. A. Davis, & K. L. Steffey (Eds.), Compendium of soybean diseases and pests (pp. 59–67). St. Paul: APS Press, The American Phytopathological Society.

    Google Scholar 

  • Guo, Z., Miyoshi, H., Komyoji, T., Haga, T., & Fujita, T. (1991). Uncoupling activity of a newly developed fungicide, fluazinam [3-chloro-N-(3-chlo-2,6-dinitro-4-trifluoromethylphenyl)-5-5-trifluoromethyl-2-pyridinamine]. Biochimica et Biophysica Acta, 1056(1), 89–92.

    CAS  Google Scholar 

  • He, L., Li, X., Gao, Y., Li, B., Mu, W., & Liu, F. (2019). Oil adjuvants enhance the efficacy of pyraclostrobin in managing cucumber powdery mildew (Podosphaera xanthii) by modifying the affinity of fungicide droplets on diseased leaves. Plant Disease, 103(7), 1657–1664.

    CAS  PubMed  Google Scholar 

  • He, L. M., Cui, K. D., Ma, D. C., Shen, R. P., Huang, X. P., Jiang, J. G., et al. (2017). Activity, translocation, and persistence of isopyrazam for controlling cucumber powdery mildew. Plant Disease, 101(7), 139–1144.

    Google Scholar 

  • Hu, M., & Wiatrak, P. (2012). Effect of planting date on soybean growth, yield, and grain quality: Review. Agronomy Journal, 104(3), 785–790.

    Google Scholar 

  • Huzar-Novakowiski, J., Paul, P. A., & Dorrance, A. E. (2017). Host resistance and chemical control for management of Sclerotinia stem rot of soybean in Ohio. Phytopathology, 107, 937–949.

    CAS  PubMed  Google Scholar 

  • Juliatti, F. C., Crato, F. F., Juliatti, F. C., Couto, K., & Juliatti, B. C. M. (2013). Escala diagramática para avaliação da severidade de mofo branco em soja. Bioscience Journal, 29(3), 676–680.

    Google Scholar 

  • Kim, H. S., Hartman, G. L., Manandhar, J. B., Graef, G. L., Steadman, J. R., & Diers, B. W. (2000). Reaction of soybean cultivars to Sclerotinia stem rot in field, greenhouse, and laboratory evaluations. Crop Science, 40(3), 665–669.

    CAS  Google Scholar 

  • Kull, L. S., Pedersen, W. L., Palmquist, D., & Hartman, G. L. (2004). Mycelial compatibility grouping and aggressiveness of Sclerotinia sclerotiorum. Plant Disease, 88(4), 325–332.

    CAS  PubMed  Google Scholar 

  • Lehner, M. S., Del Ponte, E. M., Gugino, B. K., Kikkert, J. R., & Pethybridge, S. J. (2017a). Sensitivity and efficacy of boscalid, fluazinam, and thiophanate-methyl for white mold control in snap bean in New York. Plant Disease, 101(7), 1253–1258.

    CAS  PubMed  Google Scholar 

  • Lehner, M. S., Paula Júnior, T. J., Silva, R. A., Vieira, R. F., Carneiro, J. E. S., Schnabel, G., & Mizubuti, E. S. G. (2015). Fungicide sensitivity of Sclerotinia sclerotiorum: A thorough assessment using discriminatory dose, EC50, high-resolution melting analysis, and description of new point mutation associated with thiophanate-methyl resistance. Plant Disease, 99(11), 1537–1543.

    CAS  PubMed  Google Scholar 

  • Lehner, M. S., Pethybridge, S. J., Meyer, M. C., & Del Ponte, E. M. (2017b). Meta-analytic modelling of the incidence–yield and incidence–sclerotial production relationships in soybean white mould epidemics. Plant Pathology, 66(3), 460–468.

    Google Scholar 

  • Lemay, A. V., Bailey, J. E., & Shew, B. B. (2002). Resistance of peanut to Sclerotinia blight and the effect of acibenzolar-S-methyl and fluazinam on disease incidence. Plant Disease, 86(12), 1315–1317.

    CAS  PubMed  Google Scholar 

  • Li, Y., Kim, M. R., Lee, K. B., Kim, I. S., & Shim, J. H. (2007). Determination of procymidone residues in ginseng by GC-ECD and GC-MS equipped with a solvent-free solid injector. Food Control, 18(4), 364–368.

    Google Scholar 

  • Lozowicka, B., Hrynko, I., Kaczynski, P., Jankowska, M., & Rutkowska, E. (2016). Long-term investigation and health risk assessment of multi-class fungicide residues in fruits. Polish Journal of Environmental Studies, 25(2), 681–698.

    CAS  Google Scholar 

  • Mahoney, K. J., McCreary, C. M., & Gillard, C. L. (2014). Response of dry bean white mould [Sclerotinia sclerotiorum (lib.) de Bary, causal organism] to fungicides. Canadian Journal of Plant Science, 94(5), 905–910.

    Google Scholar 

  • Masiá, A., Suarez-Varela, M. M., Llopis-Gonzalez, A., & Pico, Y. (2016). Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review. Analytica Chimica Acta, 936, 40–61.

    PubMed  Google Scholar 

  • McCreary, C. M., Depuydt, D., Vyn, R. J., & Gillard, C. L. (2016). Fungicide efficacy of dry bean white mold [Sclerotinia sclerotiorum (lib.) de Bary, causal organism] and economic analysis at moderate to high disease pressure. Crop Protection, 82, 75–81.

    CAS  Google Scholar 

  • Miorini, T. J. J., Kamvar, Z. N., Higgins, R. S., Raetano, C. G., Steadman, J. R., & Everhart, S. E. (2019). Differential aggressiveness of Sclerotinia sclerotiorum isolates from north and South America and partial host resistance in Brazilian soybean and dry bean cultivars. Tropical Plant Pathology, 44(1), 73–81.

    Google Scholar 

  • Miorini, T. J. J., Raetano, C. G., & Everhart, S. E. (2017). Control of white mold of dry bean and residual activity of fungicides applied by chemigation. Crop Protection, 94, 192–202.

    CAS  Google Scholar 

  • Mueller, D. S., Bradley, C. A., Grau, C. R., Gaska, J. M., Kurle, J. E., & Pederson, W. L. (2004). Application of thiophanate-methyl at different host growth stages for management of sclerotinia stem rot in soybean. Crop Protection, 23, 983–988.

    CAS  Google Scholar 

  • Mueller, D. S., Dorrance, A. E., Derksen, R. C., Ozkan, E., Kurle, J. E., Grau, C. R., Gaska, J. M., Hartman, G. L., Bradley, C. A., & Pedersen, W. L. (2002). Efficacy of fungicides on Sclerotinia sclerotiorum and their potential for control of Sclerotinia stem rot on soybean. Plant Disease, 86(1), 26–31.

    CAS  PubMed  Google Scholar 

  • Noh, H. H., Lee, J. Y., Park, H. K., Lee, J. W., Jo, S. H., Lim, J. B., et al. (2019). Dissipation, persistence, and risk assessment of fluxapyroxad and penthiopyrad residues in perilla leaf (Perilla frutescens var. japonica Hara). PloS one, 14(4), e0212209.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oellig, C., & Schwack, W. (2017). Comparison of HILIC columns for residue analysis of dithiocarbamate fungicides. Journal of Liquid Chromatography & Related Technologies, 40(8), 415–418.

    CAS  Google Scholar 

  • Payá, P., Anastassiades, M., Mack, D., Sigalova, I., Tasdelen, B., Oliva, J., & Barba, A. (2007). Analysis of pesticide residues using the quick easy cheap effective rugged and safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Analytical Bioanalytical Chemistry, 389(6), 1697–1714.

    PubMed  Google Scholar 

  • Peltier, A. J., Bradley, C. A., Chilvers, M. I., Malvick, D. K., Mueller, D. S., & Wise, K. A. (2012). Biology, yield loss and control of sclerotinia stem rot of soybean. Journal of Integrated Pest Management, 3(1), 1–7.

    Google Scholar 

  • Pethybridge, A. J., Gugino, B. K., & Kikket, J. R. (2019). Optimizing fungicide timing for the management of the white mold in processing snap bean in New York. Crop Protection, 125, 1–8.

    Google Scholar 

  • Quello, K. L., Chapman, K. S., & Beckerman, J. L. (2010). In situ detection of benzimidazole resistance in field isolates of Venturia inaequalis in Indiana. Plant Disease, 94(6), 744–750.

    CAS  PubMed  Google Scholar 

  • Roehrig, R., Boller, W., Forcelini, C. A., & Chechi, A. (2018). Use of surfactant with different volumes of fungicide application in soybean culture. Engenharia Agrícola, 38(4), 577–589.

    Google Scholar 

  • Rossi, V., Caffi, T., Legler, S. E., Fedele, G. (2020). A method for scoring the risk of fungicide resistance in vineyards. Crop Protection (in press). https://doi.org/10.1016/j.cropro.2020.105477.

  • Shaner, G., & Finney, R. E. (1977). The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology, 67, 1051–1056.

    CAS  Google Scholar 

  • Teixeira, P. H., Lima, R. C., Bonicontro, B. F., Mendes, O. L., Soares, B. A., Carneiro, J. E. S., et al. (2019). Management of white mold in common bean using partial resistance and fungicide applications. Crop Protection, 124, 1–8.

    Google Scholar 

  • Vieira, R. F., Paula Júnior, T. J., Carneiro, J. E. S., Teixeira, H., & Queiroz, T. F. N. (2012). Management of white mold in type III common bean with plant spacing and fungicide. Tropical Plant Pathology, 37(2), 95–101.

    Google Scholar 

  • Vitoratos, A. G. (2014). Mode of action and genetic analysis of resistance to fluazinam in Ustilago maydis. Journal of Phytopathology, 162(11), 737–746.

    CAS  Google Scholar 

  • Wilkowska, A., & Biziuk, M. (2011). Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chemistry, 125(3), 803–812.

    CAS  Google Scholar 

  • Willbur, J., McCaghey, M., Kabbage, M., & Smith, D. L. (2019). An overview of the Sclerotinia sclerotiorum pathosystem in soybean: Impact, fungal biology, and current management strategies. Tropical Plant Pathology, 44(1), 3–11.

    Google Scholar 

  • Wong, F. P., de la Cerda, K. A., Hernandez-Martinez, R., & Midland, S. L. (2008). Detection and characterization of benzimidazole resistance in California populations of Colletotrichum cereale. Plant Disease, 92(2), 239–246.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Coordination for the Improvement of Higher Education Personnel (CAPES) for the financial support (Grant number 001) provided to T. J. J. Miorini’s PhD program and to the execution of the experimental phase of this study. The authors are also grateful the financial support provided by Arysta LifeScience and Bioagri a Mérieux NutriSciences Company. Last but not least, special thanks to Dorival Boer Júnior and Ângelo Stasievski, and Anderson Fernando for assisting in the field and laboratory phase, respectively, of the study.

Availability of data and material

not applicable.

Funding

This study was financed in part by Coordination for the Improvement of Higher Education Personnel (CAPES) (Grant number 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Gilberto Raetano.

Ethics declarations

Conflicts of interest/competing interests

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

not applicable.

Consent for publication

not applicable.

Code availability

not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miorini, T.J.J., Raetano, C.G., Negrisoli, M.M. et al. Determination of the protection period of fungicides used for control of Sclerotinia stem rot in soybean through bioassay and chromatography. Eur J Plant Pathol 159, 877–889 (2021). https://doi.org/10.1007/s10658-021-02212-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02212-z

Keywords

Navigation