Skip to main content
Log in

Very Low Resistance Al/Cu Joints for Use at Cryogenic Temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present two different techniques for achieving low resistance (<20 n\(\Omega \)) contacts between copper and aluminium at cryogenic temperatures. The best method is based on gold plating of the surfaces in an e-beam evaporator immediately after Ar plasma etching in the same apparatus, yielding resistances as low as 3 n\(\Omega \) that are stable over time. The second approach involves inserting indium in the Al/Cu joint. For both methods, we believe key elements are surface polishing, total removal of the aluminum oxide surface layer, and temporary application of large (typ. 11 kN) compression forces. Such contacts are not demountable. We believe the values for gold plated contacts are the lowest ever reported for a Cu/Al joint of a few \(\mathrm{cm}^{2}\). This technology could simplify the construction of thermal links for advanced cryogenics applications, in particular that of extremely low resistance heat switches for nuclear demagnetization refrigerators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. It seems surprising that, in this article from Schmitt et al., the conductance would not depend on the applied force. We suppose that this approximation is valid for their conditions, i.e. 3 kN.

  2. Very rough estimates based on measured etching rates of 7.4 nm/min for SiO\(_2\) on Si and on [39] suggest an etching rate of \(\approx \)1.5 nm/min for Al\(_2\)O\(_3\).

References

  1. G. Pickett, C. Enss, Nat. Rev. Mater. 3(3), 1 (2018)

    Article  Google Scholar 

  2. I. Todoshchenko, J.P. Kaikkonen, R. Blaauwgeers, P.J. Hakonen, A. Savin, Rev. Sci. Instrum. 85(8), 085106 (2014)

    Article  ADS  Google Scholar 

  3. G. Batey, A. Casey, M. Cuthbert, A. Matthews, J. Saunders, A. Shibahara, New J. Phys. 15(11), 113034 (2013)

    Article  ADS  Google Scholar 

  4. F. Pobell, Matter and Methods at Low Temperatures, vol. 2 (Springer, Berlin, 2007)

    Book  Google Scholar 

  5. S. Riabzev, A. Veprik, H. Vilenchik, N. Pundak, Cryogenics 49(1), 1 (2009)

    Article  ADS  Google Scholar 

  6. D. Schmoranzer, A. Luck, E. Collin, A. Fefferman, Cryogenics 98, 102 (2019)

    Article  ADS  Google Scholar 

  7. R. Toda, S. Murakawa, H. Fukuyama, J. Phys. Conf. Ser 969, 012093 (2018)

    Article  Google Scholar 

  8. D. Schmoranzer, R. Gazizulin, S. Triqueneaux, E. Collin, A. Fefferman, J. Low Temp. Phys. 196(1–2), 261 (2019)

    Article  ADS  Google Scholar 

  9. P. Shirron, E. Canavan, M. DiPirro, J. Francis, M. Jackson, J. Tuttle, T. King, M. Grabowski, Cryogenics 44(6–8), 581 (2004)

    Article  ADS  Google Scholar 

  10. D. Schmoranzer, J. Butterworth, S. Triqueneaux, E. Collin, A. Fefferman, Cryogenics 110, 103119 (2020)

    Article  Google Scholar 

  11. R. Mueller, C. Buchal, T. Oversluizen, F. Pobell, Rev. Sci. Instrum. 49(4), 515 (1978)

    Article  ADS  Google Scholar 

  12. K. Gloos, C. Mitschka, F. Pobell, P. Smeibidl, Cryogenics 30(1), 14 (1990)

    Article  ADS  Google Scholar 

  13. M. Krusius, D. Paulson, J. Wheatley. Superconducting switch for large heat flow below 50 mk (1978)

  14. N.S. Lawson, Cryogenics 22(12), 667 (1982)

    Article  ADS  Google Scholar 

  15. E. Schuberth, Rev. Sci. Instrum. 55(9), 1486 (1984)

    Article  ADS  Google Scholar 

  16. K. Gloos, P. Smeibidl, C. Kennedy, A. Singsaas, P. Sekowski, R. Mueller, F. Pobell, J. Low Temp. Phys. 73(1–2), 101 (1988)

    Article  ADS  Google Scholar 

  17. Y.M. Bunkov, Cryogenics 29(9), 938 (1989)

    Article  ADS  Google Scholar 

  18. P.C. Ho, R. Hallock, J. Low Temp. Phys. 121(5–6), 797 (2000)

    Article  ADS  Google Scholar 

  19. W. Yao, T. Knuuttila, K. Nummila, J. Martikainen, A. Oja, O. Lounasmaa, J. Low Temp. Phys. 120(1–2), 121 (2000)

    Article  ADS  Google Scholar 

  20. T. Tajima, R. Masutomi, A. Yamaguchi, H. Ishimoto, Physica B 329, 1647 (2003)

    Article  ADS  Google Scholar 

  21. Alfa Aesar, ref. 44551

  22. Alfa Aesar, ref. 44336

  23. F. Blondelle, A. Sultan, E. Collin, H. Godfrin, J. Low Temp. Phys. 175(5–6), 877 (2014)

    Article  ADS  Google Scholar 

  24. R. Schmitt, G. Tatkowski, M. Ruschman, S. Golwala, N. Kellaris, M. Daal, J. Hall, E.W. Hoppe, Cryogenics 70, 41 (2015)

    Article  ADS  Google Scholar 

  25. I. Didschuns, A. Woodcraft, D. Bintley, P. Hargrave, Cryogenics 44(5), 293 (2004)

    Article  ADS  Google Scholar 

  26. L.J. Salerno, P. Kittel, (1997)

  27. E. Gmelin, M. Asen-Palmer, M. Reuther, R. Villar, J. Phys. D: Appl. Phys. 32(6), R19 (1999). (+ Comment by A. L. Woodcraft, J. Phys. D: Appl. Phys. 34, 2932 (2001))

  28. R. Dhuley, Cryogenics 101, 111 (2019)

    Article  ADS  Google Scholar 

  29. M. Deutsch, Cryogenics 19(5), 273 (1979)

    Article  ADS  Google Scholar 

  30. T. Shigematsu, M. Maeda, M. Takeshita, Y. Fujii, M. Nakamura, M. Yamaguchi, T. Shigi, H. Ishii, in Proceedings of the Sixteenth International Cryogenic Engineering Conference/International Cryogenic Materials Conference (Elsevier, 1997), pp. 621–624

  31. T. Okamoto, H. Fukuyama, H. Ishimoto, S. Ogawa, Rev. Sci. Instrum. 61(4), 1332 (1990)

    Article  ADS  Google Scholar 

  32. R. Willekers, W. Bosch, F. Mathu, H. Meijer, H. Postma, Cryogenics 29(9), 904 (1989)

    Article  ADS  Google Scholar 

  33. M. Wanner, Cryogenics 21(1), 3 (1981)

    Article  ADS  Google Scholar 

  34. R. Raoelison, D. Racine, Z. Zhang, N. Buiron, D. Marceau, M. Rachik, J. Manuf. Process. 16(4), 427 (2014)

    Article  Google Scholar 

  35. J. Goupy, A. Benoit, A. Bideaud, O. Bourrion, M. Calvo, A. Catalano, E. Driessen, A. Gomez, S. Leclercq, F. Levy-Bertrand et al., J. Low Temp. Phys. 193(5–6), 739 (2018)

    Article  ADS  Google Scholar 

  36. Laurand Associates, Inc

  37. http://www.rbs-cp.be/documents/cp-anglais/brochures/LABCP301ABR100217.pdf

  38. https://kayakuam.com/wp-content/uploads/2019/09/MicroChem-Remover-1112A-v07.15.pdf

  39. http://apps.mnc.umn.edu/pub/pdf/equipment/ionmill_rates.pdf

  40. Advent Research Materials catalogue #IN159701

  41. D. Guillaume, Etude bibliographique des résistances thermiques de contact, Note SBT/CT/90-38, CEA–CENG

  42. R. Boughton, N. Brubaker, R. Sarwinski, Rev. Sci. Instrum. 38(8), 1177 (1967)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the ERC StG Grant UNIGLASS No.714692 and ERC CoG Grant ULT-NEMS No. 647917. The research leading to these results has received funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement no 824109. This work has been performed at the “Plateforme Technologique Amont” (PTA) of Grenoble.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Triqueneaux.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 3 Some of the lowest published (sorted by publication date) Cu-Cu or Cu-Al contact resistances at low temperature

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triqueneaux, S., Butterworth, J., Goupy, J. et al. Very Low Resistance Al/Cu Joints for Use at Cryogenic Temperatures. J Low Temp Phys 203, 345–361 (2021). https://doi.org/10.1007/s10909-021-02575-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02575-x

Keywords

Navigation