Skip to main content
Log in

Exploring the optical properties of exposed-core-based photonic-crystal fibers

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A photonic-crystal fiber (PCF) based on the surface plasmon resonance (SPR) effect with low confinement loss and high sensitivity response is designed and its optical properties analyzed when varying different parameters. The SPR-based PCF design is analyzed to enable control over its light propagation and evanescent properties. In this investigation, gold (Au) is used as a plasmonic material to generate the SPR effect at the interface. The simulation results reveal a maximum sensitivity response of 45,303 nm/RIU with resolution of 7.0634 × 10–6 and low confinement loss of 0.575 dB/cm in the wavelength range from 1.2 to 2 µm. A high figure of merit of 378 with low full-width at half-maxima is also obtained. The proposed structure thus offers ultralow confinement loss and high sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Otto, A.: Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. A Hadrons Nucl. 216(4), 398–410 (1968)

    Article  Google Scholar 

  2. Caucheteur, C., Shevchenko, Y., Shao, L.Y., Wuilpart, M., Albert, J.: High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement. Opt. Express 19(2), 1656–1664 (2011)

    Article  Google Scholar 

  3. Qin, W., Li, S., Yao, Y., Xin, X., Xue, J.: Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte. Opt. Lasers Eng. 58(4), 1–8 (2014)

    Article  Google Scholar 

  4. Yanase, Y., Hiragun, T., Yanase, T., Kawaguchi, T., Ishii, K., Hide, M.: Application of SPR imaging sensor for detection of individual living cell reactions and clinical diagnosis of type I allergy. Allergol. Int. 62(2), 163–169 (2013)

    Article  Google Scholar 

  5. Zhang, L., Fang, M.: Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5(2), 128–142 (2010)

    Article  Google Scholar 

  6. Schares, L., Lee, B., Checconi, F., Budd, R., Rylyakov, A., Dupuis, N., et al.: A throughput-optimized optical network for data-intensive computing. IEEE Micro 34, 52–63 (2014)

    Article  Google Scholar 

  7. Badraoui, N., Berceli, T.: Enhancing capacity of optical links using polarization multiplexing. Opt. Quant. Electron. 51, 310 (2019)

    Article  Google Scholar 

  8. Castleford, D., Nirmalathas, A., Novak, D., Tucker, R.S.: Optical crosstalk in fiber-radio WDM networks. IEEE Trans. Microw. Theory Tech. 49, 2030–2035 (2001)

    Article  Google Scholar 

  9. Mauro, J.C., Raghavan, S.: Advanced modulation formats for fiber optic communication systems. Sci. Model. Simul. 8, 283–312 (2008)

    Article  Google Scholar 

  10. Islam, M.S., Sultana, J., Dinovitser, A., Ng, B.W.-H., Abbott, D.: A gold coated plasmonic sensor for biomedical and biochemical analyte detection. In: 43rd International Conference on Infrared, Millimeter, and Terahertz Wa es. (IRMMW-THz), Nagoya (2018)

  11. Islam, M.S., Sultana, J., Rifat, A.A., Ahmed, R., Dinovitser, A., Ng, B.W.H., Ebendorff-Heidepriem, H., Abbott, D.: Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum. Opt. Express 26(23), 30347–30361 (2018)

    Article  Google Scholar 

  12. Mitu, S.A., Dey, D.K., Ahmed, K., Paul, B.K., Luo, Y., Zakaria, R., Dhasarathan, V.: Fe3O4 nanofluid injected photonic crystal fiber for magnetic field sensing applications. J. Magn. Magn. Mater. 494, 165831 (2020)

    Article  Google Scholar 

  13. Mitu, S.A., Ahmed, K., Hossain, M.N., Paul, B.K., Nguyen, T.K. Dhasarathan, V.: Design of magnetic fluid sensor using elliptically hole assisted photonic crystal fiber (PCF). J. Superconduct. Novel Magn. 1–10 (2020)

  14. Tian, M., Lu, P., Chen, L., Lv, C., Liu, D.: All-solid D-shaped photonic fiber sensor based on surface plasmon resonance. Opt. Commun. 285(6), 1550–1554 (2012)

    Article  Google Scholar 

  15. An, G., Li, S., Qin, W., Zhang, W., Fan, Z., Bao, Y.: High-sensitivity refractive index sensor based on D-shaped photonic crystal fiber with rectangular lattice and nanoscale gold film. Plasmonics 9(6), 1355–1360 (2014)

    Article  Google Scholar 

  16. Coelho, L., de Almeida, J.M.M.M., Santos, J.L., Ferreira, R.A.S., Viegas, D.: Sensing structure based on surface plasmon resonance in chemically etched single mode optical fibres. Plasmonics 10, 319–327 (2015)

    Article  Google Scholar 

  17. Liu, C., Wang, F., Zheng, S., Sun, T., Lv, J., Liu, Q., Yang, L., Mu, H., Chu, P.K.: Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor. J. Mod. Opt. 63(12), 1189–1195 (2016)

    Article  Google Scholar 

  18. Zhang, Y., Liang, P., Wang, Y., Zhang, Y., Liu, Z., Wei, Y., Zhu, Z., Zhao, E., Yang, J., Yuan, L.: Cascaded distributed multichannel fiber SPR sensor based on gold film thickness adjustment approach. Sens. Actuators A 267, 526–531 (2017)

    Article  Google Scholar 

  19. Momota, M.R., Hasan, M.R.: Hollow-core silver coated photonic crystal fiber plasmonic sensor. Opt. Mater. 76, 287–294 (2018)

    Article  Google Scholar 

  20. Liu, M., Yang, X., Shum, P., Yuan, H.: High-sensitivity birefringent and single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance. Appl. Opt. 57, 1883–1886 (2018)

    Article  Google Scholar 

  21. Vigneswaran, D., Mani Rajan, M.S., Biswas, B. and Ahmed, K.: Exploring next generation of IOT devices compatible few mode assisting ring core elliptical cladding optical fiber. Wireless Netw. 1–9 (2019)

  22. Zhang, X., Wang, R., Cox, F.M., Kuhulmey, B.T., Large, M.C.J.: Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers. Opt. Express 15, 16270–16278 (2007)

    Article  Google Scholar 

  23. Rakić, A.D., Djurišić, A.B., Elazar, J.M., Majewski, M.L.: Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37(22), 5271–5283 (1998)

    Article  Google Scholar 

  24. DeVore, J.R.: Refractive indices of rutile and sphalerite. JOSA 41(6), 416–419 (1951)

    Article  Google Scholar 

  25. Malitson, I.H.: Interspecimen comparison of the refractive index of fused silica. JOSA 55(10), 1205–1209 (1965)

    Article  Google Scholar 

  26. Brückner, V.: To the use of Sellmeier formula, vol. 42, pp. 242–250. Senior Experten Service (SES) Bonn and HfT Leipzig, Germany (2011)

  27. Dodge, M.J.: Refractive properties of magnesium fluoride. Appl. Opt. 23(12), 1980–1985 (1984)

    Article  Google Scholar 

  28. Thakur, H.V., Nalawade, S.M., Gupta, S., Kitture, R., Kale, S.N.: Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection. Appl. Phys. Lett. 99(16), 161101 (2011)

    Article  Google Scholar 

  29. Hautakorpi, M., Mattinen, M., Ludvigsen, H.: Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt. Express 16(12), 8427–8432 (2008)

    Article  Google Scholar 

  30. Chakma, S., Khalek, M.A., Paul, B.K., Ahmed, K., Hasan, M.R., Bahar, A.N.: Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis. Sens. Bio-sens. Res. 18, 7–12 (2018)

    Article  Google Scholar 

  31. Peng, Y., Hou, J., Zhang, Y., Huang, Z., Xiao, R., Lu, Q.: Temperature sensing using the bandgap-like effect in a selectively liquid-filled photonic crystal fiber. Opt. Lett. 38(3), 263–265 (2013)

    Article  Google Scholar 

  32. Al Mahfuz, M., Mollah, M.A., Momota, M.R., Paul, A.K., Masud, A., Akter, S., Hasan, M.R.: Highly sensitive photonic crystal fiber plasmonic biosensor: design and analysis. Opt. Mater. 90, 315–321 (2019)

    Article  Google Scholar 

  33. Haque, E., Hossain, M.A., Namihira, Y., Ahmed, F.: Microchannel-based plasmonic refractive index sensor for low refractive index detection. Appl. Opt. 58(6), 1547–1554 (2019)

    Article  Google Scholar 

  34. Liu, M., Yang, X., Shum, P., Yuan, H.: High-sensitivity birefringent and single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance. Appl. Opt. 57(8), 1883–1886 (2018)

    Article  Google Scholar 

  35. Liu, C., Su, W., Liu, Q., Lu, X., Wang, F., Sun, T., Chu, P.K.: Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. Opt. Express 26, 9039–9049 (2018)

    Article  Google Scholar 

  36. Rifat, A.A., Haider, F., Ahmed, R., Mahdiraji, G.A., Adikan, F.R.M., Miroshnichenko, A.E.: Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. Opt. Lett. 43, 891–894 (2018)

    Article  Google Scholar 

  37. Paul, D., Biswas, R.: Highly sensitive LSPR based photonic crystal fiber sensor with embodiment of nanospheres in different material domain. Opt. Laser Technol. 101, 379–387 (2018)

    Article  Google Scholar 

  38. Islam, M.S., Islam, M.R., Sultana, J., Dinovitser, A., Ng, B.W.H., Abbott, D.: Exposed-core localized surface plasmon resonance biosensor. JOSA B 36(8), 2306–2311 (2019)

    Article  Google Scholar 

  39. Zhang, Z., Li, S., Liu, Q., Feng, X., Zhang, S., Wang, Y., Wu, J.: Groove micro-structure optical fiber refractive index sensor with nanoscale gold film based on surface plasmon resonance. Opt. Fiber Tech. 43, 45–48 (2018)

    Article  Google Scholar 

  40. Islam, M.S., Cordeiro, C.M.B., Sultana, J., Aoni, R.A., Feng, S., Ahmed, R., Dorraki, M., Dinouitser, A., Ng, B.W.H., Abbott, D.: A Hi-Bi ultra-sensitive surface plasmon resonance fiber sensor. IEEE Access 7, 79085–79094 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The work is funded by grant number 12-INF2970-10 from the National Science, Technology, and Innovation Plan (MAARIFAH), the King Abdul-Aziz City for Science and Technology (KACST), Kingdom of Saudi Arabia. We thank the Science and Technology Unit at Umm Al-Qura University for their continued logistics support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Mani Rajan.

Ethics declarations

Conflict of interest

All the authors have read the manuscript and approved it for submission and report no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitu, S.A., Ahmed, K., Abdullah, H. et al. Exploring the optical properties of exposed-core-based photonic-crystal fibers. J Comput Electron 20, 1260–1269 (2021). https://doi.org/10.1007/s10825-021-01674-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01674-y

Keywords

Navigation