Skip to main content
Log in

Structures and Energetics of Elemental Sulfur in Hydrogen Sulfide

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Severe safety concerns arise from sulfur deposition that occurs frequently in the development of high sulfur-content natural gas formation. Solubility reduction of elemental sulfur in H2S is the main reason of sulfur deposition. To understand how elemental sulfur, which exists in the form of sulfur clusters (Sn), interacts with H2S, quantum chemistry calculations are performed to study the structures and thermodynamic properties of Sn–H2S complexes. Weak interaction resulting mainly from intermolecular sulfur–sulfur interaction is revealed for these complexes. The complexes formed by S4, S6 and S8 have similar binding energies that are relatively higher than that of S2–H2S. Because of their small binding energies and Gibbs free energies, these complexes may coexist in formation, but are however easily decomposed or formed depending on stratigraphic or pipeline conditions. Our calculations reveal the status of elemental sulfur in H2S, which is useful for subsequent predictions on sulfur solubility and sulfur deposition in high sulfur-content natural gas formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Eslamimanesh, F. Gharagheizi, A. H. Mohammadi, and D. Richon (2013). Fuel Process. Technol. 110, 133.

    Article  CAS  Google Scholar 

  2. A. Eslamimanesh, A. H. Mohammadi, and D. Richon (2011). Ind. Eng. Chem. Res. 50, 7682.

    Article  CAS  Google Scholar 

  3. A. Eslamimanesh, A. H. Mohammadi, and D. Richon (2011). Ind. Eng. Chem. Res. 50, 3555.

    Article  CAS  Google Scholar 

  4. A. H. Mohammadi and D. Richon (2008). Ind. Eng. Chem. Res. 47, 8499.

    Article  CAS  Google Scholar 

  5. J. H. Hu, J. Z. Zhao, L. Wang, L. Y. Meng, and Y. M. Li (2014). J. Nat. Gas. Sci. Eng. 18, 31.

    Article  CAS  Google Scholar 

  6. J. P. L. dos Santos, A. K. de Carvalho Lima Lobato, C. Moraes, A. de Lima Cunha, G. F. da Silva, and L. C. L. dos Santos (2016). J. Nat. Gas. Sci. Eng. 32, 364.

    Article  CAS  Google Scholar 

  7. J. Hu, S. He, J. Zhao, and Y. Li (2012). J. Nat. Gas. Sci. Eng. 11, 18.

    Article  CAS  Google Scholar 

  8. H. Chen, C. Liu, X. Xu, and L. Zhang (2020). Fuel 262.

    Article  CAS  Google Scholar 

  9. E. Brunner and W. Woll (1980). SPE. J. 20, 377.

    CAS  Google Scholar 

  10. M. X. Gu, Q. Li, S. Y. Zhou, W. D. Chen, and T. M. Guo (1993). Fluid Phase Equilib. 82, 173.

    Article  CAS  Google Scholar 

  11. A. A. Migdisov, O. M. Suleimenov, and Y. V. Alekhin (1998). Geochim. Cosmochim. Acta. 62, 2627.

    Article  CAS  Google Scholar 

  12. G. Jack Roof (1972). SPE. J. 11, 272.

    Google Scholar 

  13. S. C. Swift, F. S. Manning, and R. E. Thompson (1976). SPE. J. 16, 57.

    CAS  Google Scholar 

  14. C. Y. Sun and G. J. Chen (2003). Fluid Phase Equilib. 214, 187.

    Article  CAS  Google Scholar 

  15. R. A. Heidemann, A. V. Phoenix, K. Karan, and L. A. Behie (2001). Ind. Eng. Chem. Res. 40, 2160.

    Article  CAS  Google Scholar 

  16. K. Karan, R. A. Heidemann, and L. A. Behie (1998). Ind. Eng. Chem. Res. 37, 1679.

    Article  CAS  Google Scholar 

  17. D. J. Pack, D. W. Parks, and A. B. Chesnoy (2012). J. Petrol. Sci. Eng. 94, 12.

    Article  CAS  Google Scholar 

  18. A. Kadoura, A. Salama, S. Sun, and A. Sherik (2013). Proc. Comput. Sci. 18, 2109.

    Article  Google Scholar 

  19. G. D. Brabson, Z. Mielke, and L. Andrews (1991). J. Phys. Chem. 95, 79.

    Article  CAS  Google Scholar 

  20. P. Hassanzadeh and L. Andrews (1992). J. Phys. Chem. 96, 6579.

    Article  CAS  Google Scholar 

  21. B. Eckert, R. Steudel (2003). Elemental Sulfur and Sulfur-Rich Compounds II. Topics in Current Chemistry. 231, 31.

  22. W. W. Ming, B. Eckert, R. Steudel, N. Takeda, and R. Okazaki. Elemental Sulfur and Sulfur-Rich Compounds, Part 1 (Springer, Berlin, 2003).

    Google Scholar 

  23. P. Lenain, E. Picquenard, J. Corset, D. Jensen, and R. Steudel (1988). Ber. Bunsenges. Phys. Chem. 92, 859.

    Article  CAS  Google Scholar 

  24. H. Yilmaz and S. Erkoç (1991). J. Mol. Struc-THEOCHEM. 231, 63.

    Article  Google Scholar 

  25. D. Hohl, R. O. Jones, and R. Car (1988). J. Chem. Phys. 89, 6823.

    Article  CAS  Google Scholar 

  26. D. S. Warren and B. M. Gimarc (1993). J. Phys. Chem. 97, 4031.

    Article  CAS  Google Scholar 

  27. D. A. Dixon and E. Wasserman (1990). J. Phys. Chem. 94, 5772.

    Article  CAS  Google Scholar 

  28. J. Cioslowski, A. Szarecka, and D. Moncrieff (2001). J. Phys. Chem. A 105, 501.

    Article  CAS  Google Scholar 

  29. S. Millefiori and A. Alparone (2001). J. Phys. Chem. A 105, 9489.

    Article  CAS  Google Scholar 

  30. S. Duley, A. Chakraborty, S. Giri, and P. K. Chattaraj (2010). J. Sulfur Chem. 31, 231.

    Article  CAS  Google Scholar 

  31. M. D. Chen, M. L. Liu, L. S. Zheng, Q. E. Zhang, C. T. Au (2001). Chem. Phys. Lett. 350, 119.

  32. M. D. Chen, M. L. Liu, H. B. Luo, Q. E. Zhang, and C. T. Au (2001). J. Mol. Struc-THEOCHEM. 548, 133.

    Article  CAS  Google Scholar 

  33. M. D. Chen, M. L. Liu, H. B. Luo, Q. E. Zhang, and C. T. Au (2002). J. Mol. Struc-THEOCHEM. 582, 205.

    Article  CAS  Google Scholar 

  34. R. Steudel (1980), Elemental Sulfur and Sulfur-Rich Compounds II. Topics in Current Chemistry 231, 99.

  35. J. B. Hyne, E. Muller, and T. K. Wiewiorowski (1966). J. Phys. Chem. 70, 3733.

    Article  CAS  Google Scholar 

  36. R. A. Marriott, E. Fitzpatrick, and K. L. Lesage (2008). Fluid Phase Equilib. 269, 69.

    Article  CAS  Google Scholar 

  37. H. L. Robert (1997). J. Global Optim. 11, 35.

    Article  Google Scholar 

  38. C. Bannwarth, S. Ehlert, and S. Grimme (2019). J. Chem. Theory Comput. 15, 1652.

    Article  CAS  PubMed  Google Scholar 

  39. J. M. C. Marques, A. A. C. C. Pais, and P. E. Abreu (2012). J. Comput. Chem. 33, 442.

    Article  CAS  PubMed  Google Scholar 

  40. D. Whitley, T. Starkweather, and C. Bogart (1990). Parallel Comput. 14, 347.

    Article  Google Scholar 

  41. D. J. Wales (1999). Science 285, 1368.

    Article  CAS  PubMed  Google Scholar 

  42. M. A. Abido (2002). Elec. Power Energy Sys. 24, 563.

    Article  Google Scholar 

  43. T. Lu. Molclus program, version 1.9.5; Beijing Kein Research Center for Natural Science, China; http://www.keinsci.com/research/molclus.html.

  44. S. F. Boys and F. Bernardi (2002). Mol. Phys. 100, 65.

    Article  Google Scholar 

  45. TURBOMOLE V7.2. University of Karlsruhe and Forschungszentrum Karlsruhe GmbH (2017).

  46. J. Steidel, J. Pickardt, and R. Z. Steudel (1978). Naturforsch. 33B, 1554.

    Article  CAS  Google Scholar 

  47. S. J. Rettig and J. Trotter (1987). Acta Crystallogr. C 43, 2260.

    Article  Google Scholar 

  48. H. B. Zhang and D. P. Cao (2016). Chem. Eng. Sci. 156, 121.

    Article  CAS  Google Scholar 

  49. R. T. Cygan, J. J. Liang, and A. G. Kalinichev (2004). J. Phys. Chem. B 108, 1255.

    Article  CAS  Google Scholar 

  50. J. O. Titiloye and N. T. Skipper (2005). J. Colloid Interf. Sci. 282, 422.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from National Natural Science Foundation of China (Grant No. 21773159) and Sichuan Kelit Oil & Gas Technology Service Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Zhang or Yiding Ren.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 410 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Zhang, L., Wan, Y. et al. Structures and Energetics of Elemental Sulfur in Hydrogen Sulfide. J Clust Sci 33, 1157–1164 (2022). https://doi.org/10.1007/s10876-021-02046-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02046-z

Keywords

Navigation