Skip to main content

Advertisement

Log in

Dual Enkephalinase Inhibitors and Their Role in Chronic Pain Management

  • Alternative Treatments for Pain Medicine (M Jones, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Dual enkephalinase inhibitors (DENKIs) are pain medications that indirectly activate opioid receptors and can be used as an alternative to traditional opioids. Understanding the physiology of enkephalins and their inhibitors and the pharmacology of these drugs will allow for proper clinical application for chronic pain patients in the future.

Recent Findings

DENKIs can be used as an alternative mode of analgesia for patients suffering from chronic pain by preventing the degradation of endogenous opioid ligands. By inhibiting the two major enkephalin-degrading enzymes (neprilysin and aminopeptidase N), DENKIs can provide analgesia with less adverse effects than nonendogenous opioids.

Summary

The purpose of this paper is to review the current literature investigating DENKIs and explore their contribution to chronic pain management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Stein C. New concepts in opioid analgesia. Expert Opin Investig Drugs. 2018;27(10):765–75 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30148648. Review of opioid alternatives.

    Article  CAS  PubMed  Google Scholar 

  2. Szigethy E, Knisely M, Drossman D. Opioid misuse in gastroenterology and non-opioid management of abdominal pain. Nat Rev Gastroenterol Hepatol. 2018;15(3):168–80 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29139482.

    Article  PubMed  Google Scholar 

  3. Busse JW, Wang L, Kamaleldin M, Craigie S, Riva JJ, Montoya L, et al. Opioids for chronic noncancer pain: a systematic review and meta-analysis. JAMA. 2018;320(23):2448–60 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30561481.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stein C, Kopf A. Pain therapy—are there new options on the horizon? Best Pract Res Clin Rheumatol. 2019;33(3):101420 Available from: http://www.ncbi.nlm.nih.gov/pubmed/31703793.

    Article  PubMed  Google Scholar 

  5. Podolsky SH, Herzberg D, Greene JA. Preying on prescribers (and their patients)—pharmaceutical marketing, iatrogenic epidemics, and the Sackler legacy. N Engl J Med. 2019;380(19):1785–7 Available from:http://www.ncbi.nlm.nih.gov/pubmed/30969504.

    Article  PubMed  Google Scholar 

  6. Dowell D, Haegerich T, Chou R. No shortcuts to safer opioid prescribing. N Engl J Med. 2019;380(24):2285–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/31018066.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grosser T, Woolf CJ, FitzGerald GA. Time for nonaddictive relief of pain. Science. 2017;355(6329):1026–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28280170.

    Article  CAS  PubMed  Google Scholar 

  8. Kaiser U, Treede R-D, Sabatowski R. Multimodal pain therapy in chronic noncancer pain-gold standard or need for further clarification? Pain. 2017;158(10):1853–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28328572.

    Article  PubMed  Google Scholar 

  9. Busserolles J, Lolignier S, Kerckhove N, Bertin C, Authier N, Eschalier A. Replacement of current opioid drugs focusing on MOR-related strategies. Pharmacol Ther. 2020;210:107519 Available from: http://www.ncbi.nlm.nih.gov/pubmed/32165137. Review of new dual enkephalinase inhibitors.

    Article  CAS  PubMed  Google Scholar 

  10. Raffa RB, Pergolizzi JV, Taylor R, Ossipov MH, By the NEMA Research Group. Indirect-acting strategy of opioid action instead of direct receptor activation: dual-acting enkephalinase inhibitors (DENKIs). J Clin Pharm Ther. 2018;43(4):443–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29722031. Overview of physiology and pharmacology of dual enkephalinase inhibitors.

    Article  CAS  PubMed  Google Scholar 

  11. Holden JE, Jeong Y, Forrest JM. The endogenous opioid system and clinical pain management. AACN Clin Issues. 16(3):291–301 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16082232.

  12. Darcq E, Kieffer BL. Opioid receptors: drivers to addiction? Nat Rev Neurosci. 2018;19(8):499–514 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29934561.

    Article  CAS  PubMed  Google Scholar 

  13. Jeske NA. Dynamic opioid receptor regulation in the periphery. Mol Pharmacol. 2019;95(5):463–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30723091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stein C, Küchler S. Targeting inflammation and wound healing by opioids. Trends Pharmacol Sci. 2013;34(6):303–12 Available from:http://www.ncbi.nlm.nih.gov/pubmed/23602130.

    Article  CAS  PubMed  Google Scholar 

  15. Snyder LM, Chiang MC, Loeza-Alcocer E, Omori Y, Hachisuka J, Sheahan TD, et al. Kappa opioid receptor distribution and function in primary afferents. Neuron. 2018;99(6):1274–1288.e6 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30236284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stötzner P, Spahn V, Celik MÖ, Labuz D, Machelska H. Mu-opioid receptor agonist induces Kir3 currents in mouse peripheral sensory neurons—effects of nerve injury. Front Pharmacol. 2018;9:1478 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30618766.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Al-Hasani R, Bruchas MR. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology. 2011;115(6):1363–81 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22020140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pathan H, Williams J. Basic opioid pharmacology: an update. Br J Pain. 2012;6(1):11–6 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26516461.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Duque-Díaz E, Alvarez-Ojeda O, Coveñas R. Enkephalins and ACTH in the mammalian nervous system. Vitam Horm. 2019;111:147–93 Available from: http://www.ncbi.nlm.nih.gov/pubmed/31421699. Review of enkephalin physiology.

    Article  PubMed  Google Scholar 

  20. Cullen JM Cascella M. Physiology, Enkephalin. StatPearls. 2020

  21. König M, Zimmer AM, Steiner H, Holmes PV, Crawley JN, Brownstein MJ, et al. Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature. 1996;383(6600):535–8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/8849726.

    Article  PubMed  Google Scholar 

  22. Noble F, Benturquia N, Bilkei-Gorzo A, Zimmer A, Roques BP. Use of preproenkephalin knockout mice and selective inhibitors of enkephalinases to investigate the role of enkephalins in various behaviours. Psychopharmacology. 2008;196(2):327–35 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17906961.

    Article  CAS  PubMed  Google Scholar 

  23. Swerts JP, Perdrisot R, Patey G, De La Baume S, Schwartz JC. “Enkephalinase” is distinct from brain “angiotensin-converting enzyme”. Eur J Pharmacol. 1979;57(2–3):279–81 Available from: http://www.ncbi.nlm.nih.gov/pubmed/226378.

    Article  CAS  PubMed  Google Scholar 

  24. Malfroy B, Swerts JP, Llorens C, Schwartz JC. Regional distribution of a high-affinity enkephalin-degrading peptidase ('enkephalinase’) and effects of lesions suggest localization in the vicinity of opiate receptors in brain. Neurosci Lett. 1979;11(3):329–34 Available from: http://www.ncbi.nlm.nih.gov/pubmed/229439.

    Article  CAS  PubMed  Google Scholar 

  25. Gorenstein C, Snyder SH. Enkephalinases. Proc R Soc Lond Ser B Biol Sci. 1980;210(1178):123–32 Available from: http://www.ncbi.nlm.nih.gov/pubmed/6107926.

    CAS  Google Scholar 

  26. Sullivan S, Akil H, Blacker D, Barchas JD. Enkephalinase: selective inhibitors and partial characterization. Peptides. 1980;1(1):31–5 Available from: http://www.ncbi.nlm.nih.gov/pubmed/6264406.

    Article  CAS  PubMed  Google Scholar 

  27. Schwartz JC, de la Baume S, Yi CC, Chaillet P, Marcais-Collado H, Costentin J. Peptidases involved in the inactivation of exogenous and endogenous enkephalins. J Neural Transm Suppl. 1983;18:235–43 Available from: http://www.ncbi.nlm.nih.gov/pubmed/6348211.

    CAS  PubMed  Google Scholar 

  28. de la Baume S, Yi CC, Schwartz JC, Chaillet P, Marcais-Collado H, Costentin J. Participation of both “enkephalinase” and aminopeptidase activities in the metabolism of endogenous enkephalins. Neuroscience. 1983;8(1):143–51 Available from: http://www.ncbi.nlm.nih.gov/pubmed/6300726.

    Article  PubMed  Google Scholar 

  29. Le Guen S, Mas Nieto M, Canestrelli C, Chen H, Fournié-Zaluski M-C, Cupo A, et al. Pain management by a new series of dual inhibitors of enkephalin degrading enzymes: long lasting antinociceptive properties and potentiation by CCK2 antagonist or methadone. Pain. 2003;104(1–2):139–48 Available from: http://www.ncbi.nlm.nih.gov/pubmed/12855323.

    Article  PubMed  Google Scholar 

  30. Fournie-Zaluski MC, Perdrisot R, Gacel G, Swerts JP, Roques BP, Schwartz JC. Inhibitory potency of various peptides on enkephalinase activity from mouse striatum. Biochem Biophys Res Commun. 1979;91(1):130–5 Available from: http://www.ncbi.nlm.nih.gov/pubmed/518615.

    Article  CAS  PubMed  Google Scholar 

  31. Llorens C, Gacel G, Swerts JP, Perdrisot R, Fournie-Zaluski MC, Schwartz JC, et al. Rational design of enkephalinase inhibitors: substrate specificity of enkephalinase studied from inhibitory potency of various dipeptides. Biochem Biophys Res Commun. 1980;96(4):1710–6 Available from: http://www.ncbi.nlm.nih.gov/pubmed/7004444.

    Article  CAS  PubMed  Google Scholar 

  32. Chaillet P, Marçais-Collado H, Costentin J, Yi CC, De La Baume S, Schwartz JC. Inhibition of enkephalin metabolism by, and antinociceptive activity of, bestatin, an aminopeptidase inhibitor. Eur J Pharmacol. 1983;86(3–4):329–36 Available from: http://www.ncbi.nlm.nih.gov/pubmed/6572590.

    Article  CAS  PubMed  Google Scholar 

  33. Rupreht J, Ukponmwan OE, Admiraal PV, Dzoljic MR. Effect of phosphoramidon—a selective enkephalinase inhibitor—on nociception and behaviour. Neurosci Lett. 1983;41(3):331–5 Available from: http://www.ncbi.nlm.nih.gov/pubmed/6363990.

    Article  CAS  PubMed  Google Scholar 

  34. Roques BP, Fournié-Zaluski MC, Soroca E, Lecomte JM, Malfroy B, Llorens C, et al. The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature. 1980;288(5788):286–8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/7001254.

    Article  CAS  PubMed  Google Scholar 

  35. Fournié-Zaluski MC, Chaillet P, Soroca-Lucas E, Marçais-Collado H, Costentin J, Roques BP. New carboxyalkyl inhibitors of brain enkephalinase: synthesis, biological activity, and analgesic properties. J Med Chem. 1983;26(1):60–5 Available from: http://www.ncbi.nlm.nih.gov/pubmed/6298420.

    Article  PubMed  Google Scholar 

  36. Kavaliers M, Innes DG. Sex differences in the antinociceptive effects of the enkephalinase inhibitor, SCH 34826. Pharmacol Biochem Behav. 1993;46(4):777–80 Available from: http://www.ncbi.nlm.nih.gov/pubmed/8309954.

    Article  CAS  PubMed  Google Scholar 

  37. Kita A, Imano K, Seto Y, Yakuo I, Deguchi T, Nakamura H. Antinociceptive and antidepressant-like profiles of BL-2401, a novel enkephalinase inhibitor, in mice and rats. Jpn J Pharmacol. 1997;75(4):337–46 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9469639.

    Article  CAS  PubMed  Google Scholar 

  38. Fournie-Zaluski MC, Chaillet P, Bouboutou R, Coulaud A, Cherot P, Waksman G, et al. Analgesic effects of kelatorphan, a new highly potent inhibitor of multiple enkephalin degrading enzymes. Eur J Pharmacol. 1984;102(3–4):525–8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/6386492.

    Article  CAS  PubMed  Google Scholar 

  39. Chen H, Noble F, Roques BP, Fournié-Zaluski MC. Long lasting antinociceptive properties of enkephalin degrading enzyme (NEP and APN) inhibitor prodrugs. J Med Chem. 2001;44(21):3523–30 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11585456.

    Article  CAS  PubMed  Google Scholar 

  40. Bonnard E, Poras H, Nadal X, Maldonado R, Fournié-Zaluski M-C, Roques BP. Long-lasting oral analgesic effects of N-protected aminophosphinic dual ENKephalinase inhibitors (DENKIs) in peripherally controlled pain. Pharmacol Res Perspect. 2015;3(2):e00116.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Roques BP, Fournié-Zaluski M-C, Wurm M. Inhibiting the breakdown of endogenous opioids and cannabinoids to alleviate pain. Nat Rev Drug Discov. 2012;11(4):292–310 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22460123.

    Article  CAS  PubMed  Google Scholar 

  42. Fournié-Zaluski MC, Coric P, Turcaud S, Lucas E, Noble F, Maldonado R, et al. “Mixed inhibitor-prodrug” as a new approach toward systemically active inhibitors of enkephalin-degrading enzymes. J Med Chem. 1992;35(13):2473–81 Available from: http://www.ncbi.nlm.nih.gov/pubmed/1352352.

    Article  PubMed  Google Scholar 

  43. Roques BP, Noble F, Daugé V, Fournié-Zaluski MC, Beaumont A. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev. 1993;45(1):87–146 Available from: http://www.ncbi.nlm.nih.gov/pubmed/8475170.

    CAS  PubMed  Google Scholar 

  44. González-Rodríguez S, Pevida M, Roques BP, Fournié-Zaluski M-C, Hidalgo A, Menéndez L, et al. Involvement of enkephalins in the inhibition of osteosarcoma-induced thermal hyperalgesia evoked by the blockade of peripheral P2X3 receptors. Neurosci Lett. 2009;465(3):285–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19765404.

    Article  PubMed  Google Scholar 

  45. Sales N, Dutriez I, Maziere B, Ottaviani M, Roques BP. Neutral endopeptidase 24.11 in rat peripheral tissues: comparative localization by “ex vivo” and “in vitro” autoradiography. Regul Pept. 1991;33(2):209–22 Available from: http://www.ncbi.nlm.nih.gov/pubmed/1882086.

    Article  CAS  PubMed  Google Scholar 

  46. Wenk HN, Brederson J-D, Honda CN. Morphine directly inhibits nociceptors in inflamed skin. J Neurophysiol. 2006;95(4):2083–97 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16339007.

    Article  CAS  PubMed  Google Scholar 

  47. Stein C, Zöllner C. Opioids and sensory nerves. Handb Exp Pharmacol. 2009;(194):495–518. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19655116

  48. Joseph EK, Levine JD. Mu and delta opioid receptors on nociceptors attenuate mechanical hyperalgesia in rat. Neuroscience. 2010;171(1):344–50 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20736053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Labuz D, Mousa SA, Schäfer M, Stein C, Machelska H. Relative contribution of peripheral versus central opioid receptors to antinociception. Brain Res. 2007;1160:30–8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17599812.

    Article  CAS  PubMed  Google Scholar 

  50. Maldonado R, Valverde O, Turcaud S, Fournié-Zaluski MC, Roques BP. Antinociceptive response induced by mixed inhibitors of enkephalin catabolism in peripheral inflammation. Pain. 1994;58(1):77–83 Available from: http://www.ncbi.nlm.nih.gov/pubmed/7970841.

    Article  CAS  PubMed  Google Scholar 

  51. Bourgoin S, Le Bars D, Artaud F, Clot AM, Bouboutou R, Fournie-Zaluski MC, et al. Effects of kelatorphan and other peptidase inhibitors on the in vitro and in vivo release of methionine-enkephalin-like material from the rat spinal cord. J Pharmacol Exp Ther. 1986;238(1):360–6 Available from: http://www.ncbi.nlm.nih.gov/pubmed/3459871.

    CAS  PubMed  Google Scholar 

  52. Noble F, Soleilhac JM, Soroca-Lucas E, Turcaud S, Fournie-Zaluski MC, Roques BP. Inhibition of the enkephalin-metabolizing enzymes by the first systemically active mixed inhibitor prodrug RB 101 induces potent analgesic responses in mice and rats. J Pharmacol Exp Ther. 1992;261(1):181–90 Available from: http://www.ncbi.nlm.nih.gov/pubmed/1560364.

    CAS  PubMed  Google Scholar 

  53. Stein C, Schäfer M, Machelska H. Attacking pain at its source: new perspectives on opioids. Nat Med. 2003;9(8):1003–8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/12894165.

    Article  CAS  PubMed  Google Scholar 

  54. Willer JC, Roby A, Ernst M. The enkephalinase inhibitor, GB 52, does not affect nociceptive flexion reflexes nor pain sensation in humans. Neuropharmacology. 1986;25(8):819–22 Available from: http://www.ncbi.nlm.nih.gov/pubmed/3022176.

    Article  CAS  PubMed  Google Scholar 

  55. Thanawala V, Kadam VJ, Ghosh R. Enkephalinase inhibitors: potential agents for the management of pain. Curr Drug Targets. 2008;9(10):887–94 Available from: http://www.ncbi.nlm.nih.gov/pubmed/18855623.

    Article  CAS  PubMed  Google Scholar 

  56. Meynadier J, Dalmas S, Lecomte JM, Gros C, et al. Potent analgesic effects of inhibitors of enkeplain metabolism administered intrathecally to cancer patients. Pain Clin. 1988;2(4):201–5.

    Google Scholar 

  57. Nieto MM, Wilson J, Walker J, Benavides J, Fournié-Zaluski MC, Roques BP, et al. Facilitation of enkephalins catabolism inhibitor-induced antinociception by drugs classically used in pain management. Neuropharmacology. 2001;41(4):496–506 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11543770.

    Article  CAS  PubMed  Google Scholar 

  58. Valverde O, Noble F, Beslot F, Daugé V, Fournié-Zaluski MC, Roques BP. Delta9-tetrahydrocannabinol releases and facilitates the effects of endogenous enkephalins: reduction in morphine withdrawal syndrome without change in rewarding effect. Eur J Neurosci. 2001;13(9):1816–24 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11359533.

    Article  CAS  PubMed  Google Scholar 

  59. Xu XJ, Elfvin A, Hao JX, Fournié-Zaluski MC, Roques BP, Wiesenfeld-Hallin Z. CI 988, an antagonist of the cholecystokinin-B receptor, potentiates endogenous opioid-mediated antinociception at spinal level. Neuropeptides. 1997;31(3):287–91 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9243527.

    Article  CAS  PubMed  Google Scholar 

  60. Noble F, Roques BP. Protection of endogenous enkephalin catabolism as natural approach to novel analgesic and antidepressant drugs. Expert Opin Ther Targets. 2007;11(2):145–59 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17227231.

    Article  CAS  PubMed  Google Scholar 

  61. Sitbon P, Van Elstraete A, Hamdi L, Juarez-Perez V, Mazoit J-X, Benhamou D, et al. STR-324, a stable analog of opiorphin, causes analgesia in postoperative pain by activating endogenous opioid receptor-dependent pathways. Anesthesiology. 2016;125(5):1017–29 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27571257.

    Article  CAS  PubMed  Google Scholar 

  62. Van Elstraete A, Sitbon P, Hamdi L, Juarez-Perez V, Mazoit J-X, Benhamou D, et al. The opiorphin analog STR-324 decreases sensory hypersensitivity in a rat model of neuropathic pain. Anesth Analg. 2018;126(6):2102–11 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28806211. Discussion of new dual enkephalinase inhibitor.

    Article  PubMed  Google Scholar 

  63. Campbell DJ. Long-term neprilysin inhibition—implications for ARNIs. Nat Rev Cardiol. 2017;14(3):171–86 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27974807.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren A. Southerland.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Alternative Treatments for Pain Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Southerland, W.A., Gillis, J., Kuppalli, S. et al. Dual Enkephalinase Inhibitors and Their Role in Chronic Pain Management. Curr Pain Headache Rep 25, 29 (2021). https://doi.org/10.1007/s11916-021-00949-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11916-021-00949-0

Keywords

Navigation