Skip to main content
Log in

Bidirectional options in random yield supply chains with demand and spot price uncertainty

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This article develops a game-theoretic model to value the bidirectional option in a one-manufacturer and one-component-supplier system. The production process of the supplier is subject to random yield. The manufacturer contracts the supplier with bidirectional options to obtain components, and assembles them into end products to meet a stochastic demand. In addition, both firms can sell or/and buy the components on a spot market. First, the unique optimal order and production strategies of the decentralized system under bidirectional option contracts are derived. Second, resorting to numerical example and comparing the bidirectional option model with the call option model, we find that the manufacturer’s optimal firm and total order as well as expected profit under bidirectional options are larger than that of under call options, but the option quantity has the opposite tendency. The supplier’s optimal production quantity are larger under bidirectional options than that of under call options, but only when the option (exercise) price exceeds a certain value, the supplier’s expected profit under bidirectional options will be larger than that of under call options. Third, the coordination of the decentralized system under bidirectional option contracts is analyzed and a coordination mechanism with the contract is designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, E., & Monjardino, M. (2019). Contract design in agriculture supply chains with random yield. European Journal of Operational Research, 277(3), 1072–1082.

    Article  Google Scholar 

  • Barnes-Schuster, D., Bassok, Y., & Anupindi, R. (2002). Coordination and flexibility in supply contracts with options. Manufacturing and Service Operations Management, 4(3), 171–207.

    Article  Google Scholar 

  • Boyabatlı, O. (2015). Supply management in multiproduct firms with fixed proportions technology. Management Science, 61(12), 3013–3031.

    Article  Google Scholar 

  • Burnetas, A., & Ritchken, P. (2005). Option pricing with downward-sloping demand curves: The case of supply chain options. Management Science, 51(4), 566–580.

    Article  Google Scholar 

  • Cachon, G. P. (2003). Supply chain coordination with contracts. In A. G. de Kok & S. C. Graves (Eds.), Handbooks in operations research and management science (pp. 229–339). Amsterdam: North-Holland.

    Google Scholar 

  • Chao, X. L., Gong, X. T., & Zheng, S. H. (2016). Optimal pricing and inventory policies with reliable and random-yield suppliers: Characterization and comparison. Annals of Operations Research, 241, 35–51.

    Article  Google Scholar 

  • Chen, F., & Parlar, M. (2007). Value of a put option to the risk-averse news vendor. IIE Translation, 39(5), 481–500.

    Article  Google Scholar 

  • Chen, X., & Shen, Z. J. (2012). An analysis of a supply chain with options contracts and service requirements. IIE Transactions, 44(10), 805–819.

    Article  Google Scholar 

  • Chen, X., Hao, G., & Li. L. (2014). Channel coordination with a loss-averse retailer and option contracts. International Journal of Production Economics, 150, 52-57.

  • Dada, M., Petruzzi, N. C., & Schwarz, L. B. (2007). A News vendor’s procurement problem when suppliers are unreliable. Manufacturing and Service Operations Management, 9(1), 9–32.

    Article  Google Scholar 

  • Erkoc, M., & Wu, S. D. (2005). Managing high-tech capacity expansion via reservation contracts. Production and Operations Management, 14(2), 232–251.

    Article  Google Scholar 

  • Fu, Q., Lee, C. Y., & Teo, C. P. (2010). Procurement risk management using option contracts: Random spot price and the portfolio effect. IIE Transactions, 42(2), 793–811.

    Article  Google Scholar 

  • Feng, Y., Mu, Y., Hu, B., & Kumar, A. (2014). Commodity options purchasing and credit financing under capital constraint. International Journal of Production Economics, 153, 230–237.

    Article  Google Scholar 

  • Gavirneni, S. (2004). Supply chain management at a chip tester manufacturer. The Practice of Supply Chain Management: Where Theory and Application Converge, 62, 277–291.

    Google Scholar 

  • Giri, B. C. (2011). Managing inventory with two suppliers under yield uncertainty and risk aversion. International Journal of Production Economics, 133(1), 80–85.

    Article  Google Scholar 

  • Grosfeld-Nir, A., & Gerchak, Y. (2004). Multiple lot-sizing in production to order with random yields: Review of recent advances. Annals of Operations Research, 126(1–4), 43–69.

    Article  Google Scholar 

  • Gurnani, H., & Gerchak, Y. (2007). Coordination in decentralized assembly systems with uncertain component yields. European Journal of Operational Research, 176, 1559–1576.

    Article  Google Scholar 

  • He, Y., & Zhang, J. (2008). Random yield risk sharing in a two-echelon supply chain. International Journal of Production Research, 112, 769–781.

    Article  Google Scholar 

  • Hu, B. Y., Chen, X., Felix, T. S., & Meng, C. C. (2018). Portfolio procurement policies for budget-constrained supply chains with option contracts and external financing. Journal of Industrial and Management Optimization, 14(3), 1105–1122.

    Article  Google Scholar 

  • Inderfurth, K., & Clemen, J. (2014). Supply chain coordination by risk sharing contracts under random production yield and deterministic demand. OR Spectrum, 36(2), 525–556.

    Article  Google Scholar 

  • Karlin, S. (1958). A min–max solution of an inventory problem. Stanford: Stanford University Press.

    Google Scholar 

  • Lee, C. Y., & Li, X. (2012). Loss-averse newsvendor with supplying options. Working paper, Hong Kong University of Science and Technology.

  • Lee, C. Y., Li, X., & Xie, Y. (2013). Procurement risk management using capacitated option contracts with fixed ordering costs. IIE Transactions, 45(8), 845–864.

    Article  Google Scholar 

  • Li, J., Zhou, Y., & Huang, W. (2017). Production and procurement strategies for seasonal product supply chain under yield uncertainty with commitment-option contracts. International Journal of Production Economics, 183, 208–222.

    Article  Google Scholar 

  • Li, X., & Li, Y. J. (2016). On lot-sizing problem in a random yield production system under loss aversion. Annals of Operations Research, 240, 415–434.

    Article  Google Scholar 

  • Li, X. (2017). Optimal procurement strategies from suppliers with random yield and all-or-nothing risks. Annals of Operations Research, 257, 167–181.

    Article  Google Scholar 

  • Liu, C., Jiang, Z., Liu, L., & Geng, N. (2013). Solutions for flexible container leasing contracts with options under capacity and order constraints. International Journal of Production Economics, 141(1), 403–413.

    Article  Google Scholar 

  • Luo, J., & Chen, X. (2016). Coordination of random yield supply chains with improved revenue sharing contracts. European Journal of Industrial Engineering, 10(1), 81–102.

    Article  Google Scholar 

  • Luo, J., & Chen, X. (2017). Risk hedging via option contracts in a random yield supply chain. Annals of Operations Research, 257(1–2), 697–719.

    Article  Google Scholar 

  • Luo, J., Zhang, X., & Wang, C. (2018). Using put option contracts in supply chains to manage demand and supply uncertainty. Industrial Management & Data Systems, 118(7), 1477–1497.

    Article  Google Scholar 

  • Ma, S. H., Yin, Z., & Guan, Xu. (2013). The role of spot market in a decentralized supply chain under random yield. International Journal of Production Research, 51(21), 6410–6434.

    Article  Google Scholar 

  • Mendelson, H., & Tunca, T. (2007). Strategic spot trading in supply chains. Management Science, 53(5), 742–759.

    Article  Google Scholar 

  • Milner, J. M., & Rosenblatt, M. J. (2002). Flexible supply contracts for short life-cycle goods: The buyer’s perspective. Naval Research Logistics, 49, 25–45.

    Article  Google Scholar 

  • Nagali, V., Hwang, J., Sanghera, D., Gaskins, M., Pridgen, M., Thurston, T., et al. (2008). Procurement risk management (PRM) at Hewlett-Packard company. Interfaces, 38, 51–60.

    Article  Google Scholar 

  • Nosoohi, I., & Nookabadi, A. S. (2014). Designing a supply contract to coordinate supplier’s production, considering customer oriented production. Computers & Industrial Engineering, 74, 26–36.

    Article  Google Scholar 

  • Nosoohi, I., & Nookabadi, A. S. (2016). Outsource planning through option contracts with demand and cost uncertainty. European Journal of Operational Research, 250(1), 131–142.

    Article  Google Scholar 

  • Schweitzer, M. E., & Cachon, G. P. (2000). Decision bias in the newsvendor problem with a known demand distribution: Experimental evidence. Management Science, 46, 404–420.

  • Tang, S. Y., & Kouvelis, P. (2014). Pay-back-revenue-sharing contract in coordinating supply chains with Random Yield. Production and Operations Management, 23(12), 2089–2102.

    Article  Google Scholar 

  • Wan, N., & Chen, X. (2018). Contracts choice for supply chain under inflation. International Transactions in Operational Research, 25(6), 1907–1925.

    Article  Google Scholar 

  • Wan, N., & Chen, X. (2019). The role of put option contracts in supply chain management under inflation. International Transactions in Operational Research, 26(4), 1451–1474.

    Article  Google Scholar 

  • Wang, C. X. (2009). Random yield and uncertain demand in decentralized supply chains under the traditional and VMI arrangements. International Journal of Production Research, 47(7), 1955–1968.

    Article  Google Scholar 

  • Wang, C., & Chen, X. (2017). Option pricing and coordination in the fresh produce supply chain with portfolio contracts. Annals of Operations Research, 248(1), 471–491.

    Article  Google Scholar 

  • Wang, C., Chen, J., & Chen, X. (2019). The impact of customer returns and bidirectional option contract on refund price and order decisions. European Journal of Operational Research, 274(1), 267–279.

    Article  Google Scholar 

  • Wang, Q., & Tsao, D. (2006). Supply contract with bidirectional options: The buyer’s perspective. International Journal of Production Economics, 101(1), 30–52.

    Article  Google Scholar 

  • Wang, X., & Liu, L. (2007). Coordination in a retailer-led supply chain through option contract. International Journal of Production Economics, 110(1), 115–127.

    Article  Google Scholar 

  • Wang, C., & Chen, Xu. (2018). Joint order and pricing decisions for fresh produce with put option contracts. Journal of the Operational Research Society, 69(3), 474–484.

    Article  Google Scholar 

  • Wu, D. J., & Kleindorfer, P. R. (2005). Competitive options, supply contracting, and electronic markets. Management Science, 51(3), 452–466.

    Article  Google Scholar 

  • Xu, H. (2010). Managing production and procurement through option contracts in supply chains with random yield. International Journal of Production Economics, 126(2), 306–313.

    Article  Google Scholar 

  • Yang, L., Tang, R., & Chen, K. (2017). Call, put and bidirectional option contracts in agricultural supply chains with sales effort. Applied Mathematical Modeling, 47, 1–16.

    Article  Google Scholar 

  • Yin, Z., & Ma, S. (2015). Incentives to improve the service level in a random yield supply chain: The role of bonus contracts. European Journal of Operational Research, 244, 778–791.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National key R&D Program of China (No. 2020YFB1711900), Humanities and Social Sciences of Ministry of Education of China (Nos. 17YJC630098, 18YJC630165), National Natural Science Foundation of China (Nos. 71702156, 71802168, 71972136, 91646109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 1

Equation (2) show that

$$ \begin{aligned} & \pi_{b}^{m} \left( {q_{b}^{0} ,q_{b}^{1} } \right) = \left( {r - \overline{\overline{p}}_{s} } \right)\delta + \left( {\overline{\overline{p}}_{s} - w} \right)q_{b}^{1} + \left( {\overline{\rho }_{1} - o - e_{c} \overline{V}\left( {e_{c} } \right)} \right)q_{b}^{0} \\ & \quad - \left( {\overline{\rho }_{1} - e_{c} \overline{V}\left( {e_{c} } \right)} \right)\mathop \int \limits_{0}^{{q_{b}^{0} + q_{b}^{1} }} F\left( x \right)dx - \left( {e_{c} \overline{V}\left( {e_{c} } \right) + \underline {\rho }_{1} - \alpha \overline{\overline{p}}_{s} } \right)\mathop \int \limits_{0}^{{q_{b}^{1} }} F\left( x \right)dx \\ & \quad + \left( {e_{p} V\left( {e_{p} /\alpha } \right) - \alpha \underline {p}_{2} } \right)- \mathop \int \limits_{{q_{b}^{1} - q_{b}^{0} }}^{{q_{b}^{1} }} F\left( x \right)dx. \\ \end{aligned} $$

It shows that

$$ \begin{aligned} & \frac{{\partial \pi_{b}^{m} \left( {q_{b}^{0} ,q_{b}^{1} } \right)}}{{\partial q_{b}^{0} }} = \left( {\overline{\overline{p}}_{s} - w} \right) - \left( {\overline{\rho }_{1} - e_{c} \overline{V}\left( {e_{c} } \right)} \right)F\left( {q_{b}^{0} + q_{b}^{1} } \right) + \left( {e_{p} V\left( {e_{p} /\alpha } \right) - \alpha \underline {p}_{2} } \right) \cdot \\ & \quad \left[ {F\left( {q_{b}^{1} } \right) - F\left( {q_{b}^{1} - q_{b}^{0} } \right)} \right] - \left( {e_{c} \overline{V}\left( {e_{c} } \right) + \underline {\rho }_{1} - \alpha \overline{\overline{p}}_{s} } \right)F\left( {q_{b}^{1} } \right), \\ & \quad \frac{{\partial \pi_{b}^{m} \left( {q_{b}^{0} ,q_{b}^{1} } \right)}}{{\partial q_{b}^{1} }} = \left( {\overline{\rho }_{1} - o - e_{c} \overline{V}\left( {e_{c} } \right)} \right) - \left( {\overline{\rho }_{1} - e_{c} \overline{V}\left( {e_{c} } \right)} \right)F\left( {q_{b}^{0} + q_{b}^{1} } \right) \\ & \quad + \left( {e_{p} V\left( {e_{p} /\alpha } \right) - \alpha \underline {p}_{2} } \right)F\left( {q_{b}^{1} - q_{b}^{0} } \right), \\ & \quad \frac{{\partial^{2} \pi_{b}^{m} \left( {q_{b}^{0} ,q_{b}^{1} } \right)}}{{\partial \left( {q_{b}^{0} } \right)^{2} }} = - \left( {\overline{\rho }_{1} - e_{c} \overline{V}\left( {e_{c} } \right)} \right)f\left( {q_{b}^{0} + q_{b}^{1} } \right) - \left( {e_{p} V\left( {e_{p} /\alpha } \right) - \alpha \underline {p}_{2} } \right)f\left( {q_{b}^{1} - q_{b}^{0} } \right) \\ & \quad - \left( {e_{c} \overline{V}\left( {e_{c} } \right) + \underline {\rho }_{1} - \alpha \overline{\rho }_{2} - e_{p} V\left( {e_{p} /\alpha } \right)} \right)f\left( {q_{b}^{1} } \right), \\ & \quad \frac{{\partial^{2} \pi_{b}^{m} \left( {q_{b}^{0} ,q_{b}^{1} } \right)}}{{\partial \left( {q_{b}^{1} } \right)^{2} }} = - \left( {\overline{\rho }_{1} - e_{c} \overline{V}\left( {e_{c} } \right)} \right)f\left( {q_{b}^{0} + q_{b}^{1} } \right) - \left( {e_{p} V\left( {e_{p} /\alpha } \right) - \alpha \underline {p}_{2} } \right)f\left( {q_{b}^{1} - q_{b}^{0} } \right). \\ \end{aligned} $$

From \({\overline{\rho }}_{1}={\int }_{{e}_{c}}^{B}{p}_{s}v({p}_{s})d{p}_{s}\) and \({e}_{c}\overline{V}\left({e}_{c}\right)={\int }_{{e}_{c}}^{B}{e}_{c}v({p}_{s})d{p}_{s}\), we know that \({\overline{\rho }}_{1}-{e}_{c}\overline{V}\left({e}_{c}\right)>0\). Therefore, if \({e}_{p}V({e}_{p}/\alpha )-{\alpha \underline {\rho} }_{2} >0\) and \({e}_{c}\overline{V}\left({e}_{c}\right)+{\underline {\rho} }_{2}-\alpha {\overline{\rho }}_{2}-{e}_{p}V({e}_{p}/\alpha )>0\), that is, \({e}_{c}\overline{V}\left({e}_{c}\right)+{\underline {\rho} }_{1}-\alpha {\overline{\rho }}_{2}>{e}_{p}V({e}_{p}/\alpha )>\alpha {\underline {\rho} }_{2}\),then \(\frac{{\partial }^{2}{\pi }_{b}^{m}\left({q}_{b}^{0},{q}_{b}^{1}\right)}{\partial {\left({q}_{b}^{0}\right)}^{2}}<0\). So the Hessian matrix of \({\pi }_{c}^{m}\left({q}_{c}^{0},{q}_{c}^{1}\right)\) is.

\(H\left( {q_{b}^{0} ,q_{b}^{1} } \right) = \left| {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{b}^{m} \left( {q_{b}^{0} ,q_{b}^{1} } \right)}}{{\partial \left( {q_{b}^{0} } \right)^{2} }}} & {\frac{{\partial^{2} \pi_{b}^{m} \left( {q_{b}^{0} ,q_{b}^{1} } \right)}}{{\partial q_{b}^{0} \partial q_{b}^{1} }}} \\ {\frac{{\partial^{2} \pi_{b}^{m} \left( {q_{b}^{0} ,q_{b}^{1} } \right)}}{{\partial q_{b}^{1} \partial q_{b}^{0} }}} & {\frac{{\partial^{2} \pi_{b}^{m} \left( {q_{b}^{0} ,q_{b}^{1} } \right)}}{{\partial \left( {q_{b}^{1} } \right)^{2} }}} \\ \end{array} } \right| > 0\).

It reveals that \({\pi }_{b}^{m}\left({q}_{b}^{0},{q}_{b}^{1}\right)\) is jointly concave in \({q}_{b}^{0}\) and \({q}_{b}^{1}\), and its maximum value exists when \({e}_{c}\overline{V}\left({e}_{c}\right)+{\underline{\rho }}_{1}-\alpha {\overline{\rho }}_{2}>{e}_{p}V({e}_{p}/\alpha )>\alpha {\underline{\rho }}_{2}\). From \(\partial {\pi }_{b}^{m}\left({q}_{b}^{0},{q}_{b}^{1}\right)/\partial {q}_{b}^{0}=0\) and \(\partial {\pi }_{b}^{m}\left({q}_{b}^{0},{q}_{b}^{1}\right)/\partial {q}_{b}^{1}=0\), we have

$$ \left\{ {\begin{array}{*{20}l} {F(q_{b}^{{1{*}}} - q_{b}^{{0{*}}} ) = \frac{1}{2}\left[ {\frac{{\underline {\rho }_{1} - w + o + e_{c} \overline{V}\left( {e_{c} } \right)}}{{e_{p} V\left( {e_{p} /\alpha } \right) - \alpha \underline {p}_{2} }} - \frac{{e_{c} \overline{V}\left( {e_{c} } \right) + \underline {\rho }_{1} - \alpha \overline{\rho }_{2} - e_{p} V\left( {e_{p} /\alpha } \right)}}{{e_{p} V\left( {e_{p} /\alpha } \right) - \alpha \underline {p}_{2} }}F\left( {q_{b}^{1*} } \right)} \right] } \hfill \\ {F(q_{b}^{{0{*}}} + q_{b}^{{1{*}}} ) = \frac{1}{2}\left[ {\frac{{\overline{\overline{p}}_{s} + \overline{\rho }_{1} - w - o - e_{c} \overline{V}\left( {e_{c} } \right)}}{{\overline{\rho }_{1} - e_{c} \overline{V}\left( {e_{c} } \right)}} - \frac{{e_{c} \overline{V}\left( {e_{c} } \right) + \underline {\rho }_{1} - \alpha \overline{\rho }_{2} - e_{p} V\left( {e_{p} /\alpha } \right)}}{{\overline{\rho }_{1} - e_{c} \overline{V}\left( {e_{c} } \right)}}F\left( {q_{b}^{1*} } \right)} \right] } \hfill \\ \end{array} } \right. $$

Let \(\mathcal{E}=\frac{{\underline{\rho }}_{1}-w+o+{e}_{c}\overline{V}\left({e}_{c}\right)}{{e}_{p}V\left({e}_{p}/\alpha \right)-\alpha {\underline{p}}_{2}}, \mathcal{G}=\frac{{\bar{\bar{p}}}_{s}+{\overline{\rho }}_{1}-w-o-{e}_{c}\overline{V}\left({e}_{c}\right)}{{\overline{\rho }}_{1}-{e}_{c}\overline{V}\left({e}_{c}\right)},{\mathcal{F}}_{1}=\frac{{e}_{c}\overline{V}\left({e}_{c}\right)+{\underline{\rho }}_{1}-\alpha {\overline{\rho }}_{2}-{e}_{p}V\left({e}_{p}/\alpha \right)}{{e}_{p}V\left({e}_{p}/\alpha \right)-\alpha {\underline{p}}_{2}}\) and \({\mathcal{F}}_{2}=\frac{{e}_{c}\overline{V}\left({e}_{c}\right)+{\underline{\rho }}_{1}-\alpha {\overline{\rho }}_{2}-{e}_{p}V\left({e}_{p}/\alpha \right)}{{\overline{\rho }}_{1}-{e}_{c}\overline{V}\left({e}_{c}\right)}\), we have Lemma 1.

Proof of Lemma 2

From Eq. (4), we can get:

$$ \begin{aligned} & \pi_{b}^{s} \left( {Q_{b} } \right) = \left( {w - \alpha \overline{\overline{p}}_{s} } \right)q_{b}^{1*} + (e_{c} \overline{V}\left( {e_{c} } \right) + \underline {\rho }_{1} + o \\ & \quad + \left( {1 - \alpha } \right)\overline{\overline{p}}_{s} \mathop \int \limits_{0}^{{\frac{{q_{b}^{0*} + q_{b}^{1*} }}{{Q_{b} }}}} \left[ {\mathop \int \limits_{{tQ_{b} }}^{{q_{b}^{0*} + q_{b}^{1*} }} F\left( x \right)dx + \left( {tQ_{b} - q_{b}^{1*} - q_{b}^{0*} } \right)} \right]\varphi \left( t \right)dt \\ & \quad + \left( {1 - \alpha } \right)\overline{\overline{p}}_{s} \mathop \int \limits_{0}^{{\frac{{q_{b}^{1*} }}{{Q_{b} }}}} \mathop \int \limits_{{q_{b}^{1*} }}^{{tQ_{b} }} F\left( x \right)dx\varphi \left( t \right)dt - \left( {e_{p} V\left( {e_{p} /\alpha } \right) - \alpha \underline {\rho }_{2} } \right)\mathop \int \limits_{{q_{b}^{1*} - q_{b}^{0*} }}^{{q_{b}^{0*} }} F\left( x \right)dx \\ & \quad - \left( {e_{c} \overline{V}\left( {e_{c} } \right) + \underline {\rho }_{1} - \alpha \overline{\overline{p}}_{s} } \right)\mathop \int \limits_{{q_{b}^{1*} }}^{{q_{b}^{0*} + q_{b}^{1*} }} F\left( x \right)dx - \left( {c - \alpha \overline{\overline{p}}_{s} \mu } \right)Q_{b} . \\ \end{aligned} $$

It shows that

$$ \begin{aligned} & \frac{{d\pi_{b}^{s} \left( {Q_{b} } \right)}}{{dQ_{b} }} = \left( {1 - \alpha } \right)\overline{\overline{p}}_{s} \mathop \int \limits_{0}^{{\frac{{q_{b}^{0*} + q_{b}^{1*} }}{{Q_{b} }}}} \overline{F}\left( {tQ_{b} } \right)t\varphi \left( t \right)dt + \left( {1 - \alpha } \right)\overline{\overline{p}}_{s} \mathop \int \limits_{0}^{{\frac{{q_{b}^{1*} }}{{Q_{b} }}}} F\left( {tQ_{b} } \right)t\varphi \left( t \right)dt \\ & \quad - \left( {c - \alpha \overline{\overline{p}}_{s} \mu } \right), \\ & \quad \frac{{d^{2} \pi_{b}^{s} \left( {Q_{b} } \right)}}{{d\left( {Q_{b} } \right)^{2} }} = - \left( {1 - \alpha } \right)\overline{\overline{p}}_{s} \mathop \int \limits_{0}^{{\frac{{q_{b}^{0*} + q_{b}^{1*} }}{{Q_{b} }}}} f\left( {tQ_{b} } \right)t^{2} \varphi \left( t \right)dt + \left( {1 - \alpha } \right)\overline{\overline{p}}_{s} \mathop \int \limits_{0}^{{\frac{{q_{b}^{1*} }}{{Q_{b} }}}} f\left( {tQ_{b} } \right)t^{2} \varphi \left( t \right)dt \\ & \quad - \left( {1 - \alpha } \right)\overline{\overline{p}}_{s} \left[ {\frac{{\left( {q_{b}^{0*} + q_{b}^{1*} } \right)^{2} }}{{Q_{b}^{3} }}\varphi \left( {\frac{{q_{b}^{0*} + q_{b}^{1*} }}{{Q_{b} }}} \right)\overline{F}\left( {q_{b}^{0*} + q_{b}^{1*} } \right) + \frac{{\left( {q_{b}^{1*} } \right)^{2} }}{{Q_{b}^{3} }}\varphi \left( {\frac{{q_{b}^{1*} }}{{Q_{b} }}} \right)F\left( {q_{b}^{1*} } \right)} \right] < 0 \\ \end{aligned} $$

So, \({\pi }_{b}^{s}\left({Q}_{b}\right)\) is concave in \({Q}_{b}\), and its maximum value exists. From \(\partial {\pi }_{b}^{s}\left({Q}_{b}\right)/\partial {Q}_{b}=0\) we can get Lemma 2.

Proof of Proposition 1

We can get.

  1. (1)

    If \(tQ^{c*} < q_{b}^{1*}\), then.

    1. (a)

      When \(tQ^{c*} < q_{b}^{1*} < x\), \({\Pi }_{b} \left( {q_{b}^{1*} ,q_{b}^{0*} ,Q^{c*} } \right) = rx - \overline{\overline{p}}_{s} E\left( {x - tQ^{c*} } \right) - cQ^{c*} = {\Pi }^{c} \left( {Q^{c*} } \right)\);

    2. (b)

      When \(tQ^{c*} < x < q_{b}^{1*}\),

      $$ \begin{aligned} & {\Pi }_{b} \left( {q_{b}^{1*} ,q_{b}^{0*} ,Q^{c*} } \right) = rx - \overline{\overline{p}}_{s} \left( {q_{b}^{1*} - tQ^{c*} } \right) + \alpha \overline{\overline{p}}_{s} \left( {q_{b}^{1*} - x} \right) - cQ^{c*} \\ & \quad < rx - \overline{\overline{p}}_{s} \left( {q_{b}^{1*} - tQ^{c*} } \right) + \overline{\overline{p}}_{s} \left( {q_{b}^{1*} - x} \right) - cQ^{c*} \\ & \quad = rx - \overline{\overline{p}}_{s} E\left( {x - tQ^{c*} } \right) - cQ^{c*} = {\Pi }^{c} \left( {Q^{c*} } \right) \\ \end{aligned} $$
    3. (c)

      When \(x < tQ^{c*} < q_{b}^{1*}\),

      $$ \begin{aligned} & {\Pi }_{b} \left( {q_{b}^{1*} ,q_{b}^{0*} ,Q^{c*} } \right) = rx - \overline{\overline{p}}_{s} \left( {q_{b}^{1*} - tQ^{c*} } \right) + \alpha \overline{\overline{p}}_{s} \left( {q_{b}^{1*} - x} \right) - cQ^{c*} \\ & \quad < rx - \alpha \overline{\overline{p}}_{s} \left( {q_{b}^{1*} - tQ^{c*} } \right) + \alpha \overline{\overline{p}}_{s} \left( {q_{b}^{1*} - x} \right) - cQ^{c*} \\ & \quad = rx + \alpha \overline{\overline{p}}_{s} \left( {tQ^{c*} - x} \right) - cQ^{c*} = {\Pi }^{c} \left( {Q^{c*} } \right). \\ \end{aligned} $$
  2. (2)

    If \(q_{b}^{1*} + q_{b}^{0*} > tQ^{c*} > q_{b}^{1*}\), then.

    1. (a)

      When \(tQ^{c*} > q_{b}^{1*} > x \) and \(tQ^{c*} > x > q_{b}^{1*}\),\({\Pi }_{b} \left( {q_{b}^{1*} ,q_{b}^{0*} ,Q^{c*} } \right) = rx + \alpha \overline{\overline{p}}_{s} \left( {tQ^{c*} - x} \right) - cQ^{c*} = {\Pi }^{c} \left( {Q^{c*} } \right)\);

    2. (b)

      When \(x > tQ^{c*} > q_{b}^{1*}\), \({\Pi }_{b} \left( {q_{b}^{1*} ,q_{b}^{0*} ,Q^{c*} } \right) = rx - \overline{\overline{p}}_{s} E\left( {x - tQ^{c*} } \right) - cQ^{c*} = {\Pi }^{c} \left( {Q^{c*} } \right)\).

  3. (3)

    If \(tQ^{c*} > q_{b}^{1*} + q_{b}^{0*}\), then.

    1. (a)

      When \(tQ^{c*} > q_{b}^{1*} + q_{b}^{0*} > x\),\({\Pi }_{b} \left( {q_{b}^{1*} ,q_{b}^{0*} ,Q^{c*} } \right) = rx + \alpha \overline{\overline{p}}_{s} \left( {tQ^{c*} - x} \right) - cQ^{c*} = {\Pi }^{c} \left( {Q^{c*} } \right)\);

    2. (b)

      When \(tQ^{c*} > x > q_{b}^{1*} + q_{b}^{0*}\),

      $$ \begin{aligned} & {\Pi }_{b} \left( {q_{b}^{1*} ,q_{b}^{0*} ,Q^{c*} } \right) = rx + \alpha \overline{\overline{p}}_{s} E\left( {tQ^{c*} - q_{b}^{1*} - q_{b}^{0*} } \right) - \overline{\overline{p}}_{s} E\left( {x - q_{b}^{1*} - q_{b}^{0*} } \right) - cQ^{c*} \\ & \quad < rx + \alpha \overline{\overline{p}}_{s} E\left( {tQ^{c*} - q_{b}^{1*} - q_{b}^{0*} } \right) - \alpha \overline{\overline{p}}_{s} E\left( {x - q_{b}^{1*} - q_{b}^{0*} } \right) - cQ^{c*} \\ & \quad < rx + \alpha \overline{\overline{p}}_{s} E\left( {tQ^{c*} - q_{b}^{1*} - q_{b}^{0*} } \right) - \alpha \overline{\overline{p}}_{s} E\left( {x - q_{b}^{1*} - q_{b}^{0*} } \right) - cQ^{c*} \\ & \quad = rx + \alpha \overline{\overline{p}}_{s} E\left( {tQ^{c*} - x} \right) - cQ^{c*} = {\Pi }^{c} \left( {Q^{c*} } \right) \\ \end{aligned} $$
    3. (c)

      When \(x > tQ^{c*} > q_{b}^{1*} + q_{b}^{0*}\),

      $$ \begin{aligned} & {\Pi }_{b} \left( {q_{b}^{1*} ,q_{b}^{0*} ,Q^{c*} } \right) = rx + \alpha \overline{\overline{p}}_{s} E\left( {tQ^{c*} - q_{b}^{1*} - q_{b}^{0*} } \right) - \overline{\overline{p}}_{s} E\left( {x - q_{b}^{1*} - q_{b}^{0*} } \right)^{ + } - cQ^{c*} \\ & \quad < rx + \overline{\overline{p}}_{s} E\left( {tQ^{c*} - q_{b}^{1*} - q_{b}^{0*} } \right) - \overline{\overline{p}}_{s} E\left( {x - q_{b}^{1*} - q_{b}^{0*} } \right) - cQ^{c*} \\ & \quad = rx + \overline{\overline{p}}_{s} E\left( {tQ^{c*} - x} \right) - cQ^{c*} = {\Pi }^{c} \left( {Q^{c*} } \right) \\ \end{aligned} $$

Proof of Proposition 2

From Eq. (12), we have:

\(\begin{aligned} & \pi_{b}^{{\text{s}}} \left( {\hat{Q}_{b} } \right) = \left( {w - \overline{\overline{p}}_{s} } \right)\hat{q}_{b}^{1} + \left( {e_{c} \overline{V}\left( {e_{c} } \right) - \overline{\rho }_{1} + o} \right)\hat{q}_{b}^{0} - \left( {1 - \alpha } \right)\overline{\overline{p}}_{s} \mathop \int \limits_{0}^{1} \mathop \int \limits_{0}^{{t\hat{Q}_{b} }} F\left( x \right)dx\varphi \left( t \right)dt \\ & \quad + \left( {\underline {\rho }_{1} - e_{c} \overline{V}\left( {e_{c} } \right)} \right)\mathop \int \limits_{0}^{{\hat{q}_{b}^{1} + \hat{q}_{b}^{0} }} F\left( x \right){\text{dx}} + \left( {e_{p} V\left( {e_{p} /\alpha } \right) - \alpha \underline {\rho }_{2} } \right)\mathop \int \limits_{0}^{{\hat{q}_{b}^{1} - \hat{q}_{b}^{0} }} F\left( x \right)dx \\ { } & \quad { + }\left[ {w - \alpha \overline{\rho }_{2} - e_{p} V\left( {e_{p} /\alpha } \right)} \right]\mathop \int \limits_{0}^{{\frac{{\hat{q}_{b}^{1} }}{{\hat{Q}_{b} }}}} \mathop \int \limits_{{\hat{q}_{b}^{1} }}^{{t\hat{Q}_{b} }} F\left( x \right)dx\varphi \left( t \right)dt - \left( {c - \overline{\overline{p}}_{s} \mu } \right)\hat{Q}_{b} \\ & \quad + [e_{c} \overline{V}\left( {e_{c} } \right) + \underline {\rho }_{e} - \alpha \overline{\rho }_{2} - e_{p} V\left( {e_{p} /\alpha } \right)\mathop \int \limits_{0}^{{\hat{q}_{b}^{1} }} F\left( x \right)dx. \\ & \quad \frac{{d\pi_{b}^{s} \left( {\hat{Q}_{b} } \right)}}{{d\hat{Q}_{b} }} = \left[ {w - \alpha \overline{\rho }_{2} - e_{p} V\left( {e_{p} /\alpha } \right)} \right]\mathop \int \limits_{0}^{{\frac{{\hat{q}_{b}^{1} }}{{\hat{Q}_{b} }}}} \mathop \int \limits_{{\hat{q}_{b}^{1} }}^{{t\hat{Q}_{b} }} F\left( x \right)dx\varphi \left( t \right)d{ } - \left( {1 - \alpha } \right)\overline{\overline{p}}_{s} \mathop \int \limits_{0}^{1} F\left( {t\hat{Q}_{b} } \right)dx\varphi \left( t \right)dt + \left( {\overline{\overline{p}}_{s} \mu - c} \right) \\ & \quad \frac{{d^{2} \pi_{b}^{s} \left( {\hat{Q}_{b} } \right)}}{{d\left( {\hat{Q}_{b} } \right)^{2} }} = \left[ {w - \alpha \overline{\rho }_{2} - e_{p} V\left( {e_{p} /\alpha } \right)} \right]\mathop \int \limits_{0}^{{\frac{{\hat{q}_{b}^{1} }}{{\hat{Q}_{b} }}}} f\left( {t\hat{Q}_{b} } \right)t^{2} \varphi \left( t \right)dt - \left( {1 - \alpha } \right)\overline{\overline{p}}_{s} \mathop \int \limits_{0}^{1} f\left( {t\hat{Q}_{b} } \right)t^{2} \varphi \left( t \right)dt \\ & \quad < \left[ {\left( {w - \overline{\overline{p}}_{s} } \right) - \left( {e_{p} V\left( {e_{p} /\alpha } \right) - \alpha \underline {\rho }_{2} } \right)} \right]\mathop \int \limits_{0}^{{\frac{{\hat{q}_{b}^{1} }}{{\hat{Q}_{b} }}}} f\left( {t\hat{Q}_{b} } \right)t^{2} \varphi \left( t \right)dt \\ \end{aligned}\)So \({\pi }_{b}^{s}\left({\widehat{Q}}_{b}\right)\) is concave in \({\widehat{Q}}_{b}\), we can get Proposition 2 from \({\pi }_{b}^{s}\left({\widehat{Q}}_{b}\right)/\partial {\widehat{Q}}_{b}=0\).

Proof of Proposition 3

To ensure \({\widehat{Q}}_{b}^{*}={Q}^{c*}\), compare Eqs. (14) and (9), we have \(\alpha {\overline{\rho }}_{2}+{e}_{p}V\left({e}_{p}/\alpha \right)-w=0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Chen, X., Wang, C. et al. Bidirectional options in random yield supply chains with demand and spot price uncertainty. Ann Oper Res 302, 211–230 (2021). https://doi.org/10.1007/s10479-021-03986-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-03986-5

Keywords

Navigation