Skip to main content
Log in

Temperature Dependence of CaO Desulfurization Mechanism in Molten Ni-Base Superalloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Desulfurization phenomenon of Ni-base superalloy using a solid CaO was identified by adjusting the temperature of melt. Ni-base superalloy and NiS powder were heated together at 1400 °C, 1500 °C, and 1600 °C. Dense and porous CaO rods were inserted into the melts individually. After the rods were pulled out, CaO, CaS, and calcium aluminates were detected on the rods by X-ray diffraction analysis. Electron probe microanalysis showed that only Ca, O, Al, and S distributed at the melt/CaO interfaces. At 1500 °C and 1600 °C, Al and S were also detected at particle boundaries in the rods. S contents in the alloys decreased as the desulfurization time passed and the temperature was raised. There was no prominent correlation between the rod porosity and the S contents. The desulfurization reaction was suggested to be that CaO, Al, and S react to generate CaS and calcium aluminates. When the temperature is high enough, the calcium aluminates form a solid–liquid coexisting state. Effective diffusion coefficient, which shows the S diffusivity in the generated layer at the melt/CaO interface, depends on the temperature and can be expressed by the Arrhenius equation. It has been supposed that the desulfurization reaction mainly occurs on CaO, and a macroscale surface area controls the desulfurization rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

[Pct Al]:

Content of Al in the melt (pct)

[Pct S]:

Content of S in the melt (pct)

a i :

Activity of each material

A :

Area of the melt/CaO interface (m2)

CS,0 :

Initial S content in the melt (ppm)

C S,t :

S content in the melt at time t (ppm)

C S, fin :

Final S content in the melt (ppm)

D :

Effective diffusion coefficient (m2/s)

\( e_{i}^{j} \) :

Interaction parameter of each material

f Al :

Activity coefficient of Al in the melt

\( \Delta G_{i}^{0} \) :

Gibbs free energy of each chemical reaction (J/mol)

i, j :

Material

K :

Equilibrium constant of each chemical reaction

M i :

Molar mass of each material (g/mol)

R:

The gas constant: 8.31 (J/(mol K))

t :

Desulfurization time (= holding time of the CaO rod in the melt) (s)

T :

Absolute temperature of the melt during the experiment (K)

\( W_{\text{Ni}} \) :

Weight of the melt (g)

\( \rho_{i} \) :

Density of each material (g/m3)

References

  1. H. Harada, T. Tetsui, Y. Gu, J. Fujioka, K. Kawagishi, and K. Matsumoto: Journal of the Gas Turbine Society of Japan, 2013, vol. 41, pp.85–92.

    Google Scholar 

  2. T. Matsui: Journal of the Gas Turbine Society of Japan, 2011, vol. 39, pp. 261–266.

    Google Scholar 

  3. P. Caron: Superalloys. TMS, Champion, PA, 2000, pp. 737–746.

    Google Scholar 

  4. K. Kawagishi, A. Yeh, T. Yokokawa, T. Kobayashi, Y. Koizumi, and H. Harada: Superalloys. TMS, Seven Springs, 2012, pp. 189–195.

    Book  Google Scholar 

  5. V. V. S. Prasad, A. S. Rao, U. Prakash, V. R. Rao, P. K. Rao, and K. M. Gupt: ISIJ Int., 1996, vol. 36, pp. 1459-1464.

    Article  CAS  Google Scholar 

  6. S. K. Mamo, M. Elie, M. G. Baron, A. M. Simons, and J. Gonzalez-Rodriguez: Sep. Purif. Technol., 2019, vol. 212, pp. 150-160.

    Article  CAS  Google Scholar 

  7. S. Utada, Y. Joh, M. Osawa, T. Yokokawa, T. Kobayashi, K. Kawagishi, S. Suzuki, and H. Harada: Superalloys.. TMS, Champion, PA, 2016, pp. 591–599.

    Google Scholar 

  8. H. Harada, K. Kawagishi, T. Kobayashi, T. Yokokawa, M. Osawa, M. Yuyama, S. Suzuki, Y. Joh, S. Utada, US Patent, patent number 10689741 (2020.06.23).

  9. J. X. Dong, X. S. Xie, and R. G. Thompson: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2135–2144.

    Article  CAS  Google Scholar 

  10. Y. Joh, S. Utada, M. Osawa, T. Kobayashi, T. Yokokawa, K. Kawagishi, S. Suzuki, and H. Harada: Mater.Trans., 2016, vol. 57, pp. 1305–08.

    Article  CAS  Google Scholar 

  11. S. Utada, Y. Joh, M. Osawa, T. Yokokawa, T. Sugiyama, T. Kobayashi, K. Kawagishi, S. Suzuki, and H. Harada: Metall. Mater. Trans. A, 2018, vol. 49, pp. 4029-4041.

    Article  Google Scholar 

  12. H. J. Grabke, D. Wiemer, and H.Viefhaus: Appl. Surf. Sci., 1991, vol. 47, pp. 243–250.

    Article  CAS  Google Scholar 

  13. M. A. Smith, W. E. Frazier, and B. A. Pregger: Mater. Sci. Eng. A, 1995, vol. A203, pp. 388-398.

    Article  CAS  Google Scholar 

  14. C. Sarioglu, C. Stinner, J. R. Blachere, N. Birks, F. S. Pettit, G. H. Meier, and J. L. Smialek: Superalloys. TMS, Seven Springs, Champion, PA, 1996, pp. 71-81.

    Google Scholar 

  15. Y. Joh, T. Kobayashi, T. Yokokawa, K. Kawagishi, M. Osawa, S. Suzuki, and H. Harada: 10th Liège Conf.: Materials for Advanced Power Engineering, 2014, pp. 538–44.

  16. D. W. Yun, S. M. Seo, H.W. Jeong, and Y. S. Yoo: Corros. Sci., vol. 90, 2015, pp. 392–401.

    Article  CAS  Google Scholar 

  17. T. Sugiyama, S. Utada, T. Yokokawa, M. Osawa, K. Kawagishi, S. Suzuki, and H. Harada: Metall. Mater. Trans. A, 2019, vol. 50, pp. 3903-3911.

    Article  Google Scholar 

  18. T. Yokokawa, H. Harada, K. Kawagishi, M. Osawa, Y. Takata, M. Yuyama, T. Kobayashi, T. Sugiyama, and S. Suzuki: Superalloys 2020, TMS, Seven Springs, Champion, PA, Accepted for publication.

    Google Scholar 

  19. V. V. Sidorov and P. G. Min: Russ. Metall., 2014, vol. 2014, pp. 982–986.

    Article  Google Scholar 

  20. J. Niu, K. Yang, T. Jin, X. Sun, H. Guan, and Z. Hu: J. Mater. Sci. Technol., 2003, vol. 19, pp. 69-72.

    Article  CAS  Google Scholar 

  21. Y. Kishimoto, S. Utada, T. Iguchi, Y. Mori, M. Osawa, T. Yokokawa, T. Kobayashi, K. Kawagishi, S. Suzuki, and H. Harada: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 293-305.

    Article  Google Scholar 

  22. Y. Kishimoto, T. Iguchi, T. Kono, T. Yokokawa, M. Osawa, K. Kawagishi, S. Suzuki, and H. Harada: Proceedings of Joint EPRI-123HiMAT International Conference on Advances in High-Temperature Materials, 2019, pp. 426–32.

  23. A. K. Chatterjee and G. I. Zhmoidin: J. Mater. Sci., 1972, vol. 7, pp. 93-97.

    Article  CAS  Google Scholar 

  24. K. Kawagishi, T. Yokokawa, T. Kobayashi, Y. Koizumi, M. Sakamoto, M. Yuyama, H. Harada, I. Okada, M. Taneike, and H. Oguma: Superalloys. TMS, Champion, PA, 2016, pp. 115-122.

    Google Scholar 

  25. K. Kawagishi, H. Harada, T. Yokokawa, Y. Koizumi, T. Kobayashi, M. Sakamoto, M. Yuyama, M. Taneike, I. Okada, S. Shimohata, H. Oguma, R. Okimoto, K. Tsukagoshi, Y. Uemura, J. Masada, and S. Torii: Patent WO2014024734A1, 2013, WPIO/PCT.

  26. T. Iida: Journal of the Japan Welding Society, 1993, vol. 62, pp. 590-594.

    Article  CAS  Google Scholar 

  27. T. Tanaka, Y. Ogiso, M. Ueda, and J. Lee: ISIJ Int., 2010, vol. 50, pp. 1071-1077.

    Article  CAS  Google Scholar 

  28. I. Barin: Thermochemical Data of Pure Substances, 3rd ed., VCH Verlagsgesellschaft mbH, Weinheim and VCH Publishers, Inc., New York, NY, 1995.

    Book  Google Scholar 

  29. G. K. Sigworth, J. F. Elliott, G. Vaughn, and G. H. Geiger: Can. Metall. Q., 1977, vol. 16, pp.104-110.

    Article  CAS  Google Scholar 

  30. W. V. Venal and G. H. Geiger: Metall. Trans., 1973, vol. 4, pp. 2567-2573.

    Article  CAS  Google Scholar 

  31. S. W. Cho and H. Suito: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 249-256.

    Article  CAS  Google Scholar 

  32. R. H. Rein and J. Chipman: Trans. Metall. Soc. AIME, 1965, vol. 233, pp. 415-425.

    CAS  Google Scholar 

  33. K. Saito and Y. Kawai: J.Japan Inst.Met.Mater., 1953, vol. 17, pp. 434-438.

    Article  Google Scholar 

  34. E. S. Vorontsov and O. A. Esin: Izv. Akad. Nauk. SSSR Otd. Tekh. Nauk., 1958, pp. 152–55.

Download references

Acknowledgments

This research was financially supported by Japan Science and Technology (JST), under the Advanced Low Carbon Technology Research and Development Program (ALCA) project “Development of Direct and Complete Recycling Method for Superalloy Turbine Aerofoils (Grant No. JPMJAL1302)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Kishimoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 13, 2020, accepted February 5, 2021.

Appendix

Appendix

Derivation of Thermodynamic Equilibrium Calculation

Thermodynamics equilibrium in Figure 13 is explained as follows. Gibbs free energies at 1873 K (1600 °C) are calculated by references.[28,29,30]

$$ 3 {\text{CaO }}\left( {\text{solid}} \right) + 2 {\text{Al }}\left( {\text{liquid}} \right) + 3/2{\text{S}}_{ 2} \left( {\text{gas}} \right) = 3 {\text{CaS }}\left( {\text{solid}} \right) + {\text{Al}}_{ 2} {\text{O}}_{ 3} \left( {\text{solid}} \right) $$
(A-1)
$$ \Delta G_{1}^{0} \, = \, - \,821{,}506 \, \left( {{\text{J}}/{\text{mol}}} \right) $$
(A-2)
$$ {\text{Al }}\left( {\text{liquid}} \right) = {\text{Al }}\left( {\text{in Ni}} \right) $$
(A-3)
$$ \Delta G_{2}^{0} = - 190,935 \, \left( {{\text{J}}/{\text{mol}}} \right) $$
(A-4)
$$ \frac{1}{2}S_{ 2} \, = \,S \, \left( {\text{in Ni}} \right) $$
(A-5)
$$ \Delta G_{3}^{0} \, = \, - \,90,214 \, \left( {{\text{J}}/{\text{mol}}} \right) $$
(A-6)

Therefore, the Gibbs free energy of the desulfurization reaction at 1873 K is

$$ 3 {\text{CaO }}\left( {\text{solid}} \right)\, + \, 2 {\text{Al }}\left( {\text{in Ni}} \right)\, + \, 3 {\text{S }}\left( {{\text{in}}\,{\text{Ni}}} \right)\, = \, 3 {\text{CaS }}\left( {\text{solid}} \right)\, + \,{\text{Al}}_{ 2} {\text{O}}_{ 3} \left( {\text{solid}} \right) $$
(A-7)
$$ \Delta G_{4}^{0} = \Delta G_{1}^{0} - 2 \times \Delta G_{2}^{0} - 3 \times \Delta G_{3}^{0} = - 1 6 8{,}9 9 3 { }\left( {{\text{J}}/{\text{mol}}} \right) $$
(A-8)

The Equilibrium constant K1 is

$$ \Delta G_{4}^{0} = - RT\ln K_{1} $$
(A-9)
$$ K_{1} = \, 51,821 $$
(A-10)

K1 is written as

$$ K_{1} = \frac{{a_{\text{CaS}}^{3} \times a_{{{\text{Al}}_{ 2} {\text{O}}_{ 3} }} }}{{a_{\text{CaO}}^{3} \times a_{\text{Al}}^{2} \times a_{\text{S}}^{3} }} $$
(A-11)

Therefore, logarithm of Al activity: \( { \log }(a_{\text{S}} ) \) is

$$ a_{\text{S}}^{3} = \frac{{a_{\text{CaS}}^{3} \times a_{{{\text{Al}}_{ 2} {\text{O}}_{ 3} }} }}{{a_{\text{CaO}}^{3} \times a_{\text{Al}}^{2} \times K_1}} $$
(A-12)
$$ { \log }\left( {a_{S}^{3} } \right) {\text{ = log}}\left( { \frac{{a_{\text{CaS}}^{3} \times a_{{{\text{Al}}_{2} {\text{O}}_{3} }} }}{{a_{\text{CaO}}^{3} \times a_{\text{Al}}^{2} \times K_1}} } \right) $$
(A-13)
$$ { \log }\left( {a_{\text{S}} } \right) = - \frac{2}{3}{ \log }\left( {a_{\text{Al}} } \right) + \frac{1}{3}{ \log }\left( { \frac{{a_{\text{CaS}}^{3} \times a_{{{\text{Al}}_{2} {\text{O}}_{3} }} }}{{a_{\text{CaO}}^{3} \times K_1}} } \right) $$
(A-14)

Using the value of \( a_{\text{CaO}} \) = 0.99, \( a_{{{\text{Al}}_{2} {\text{O}}_{3} }} \) = 0.0095,[31] and assuming that \( a_{\text{CaS}} \) = 1, Eq. [A-14] is written as

$$ { \log }\left( {a_{\text{S}} } \right) = - \frac{2}{3}\log \left( {a_{\text{Al}} } \right) - 2.24 $$
(A-15)

The Gibbs free energy of following reaction at 1873 K is[32]

$$ 3 {\text{CaO }}\left( {\text{solid}} \right) + {\text{Al}}_{ 2} {\text{O}}_{ 3} \left( {\text{solid}} \right) = 3 {\text{CaO}}\cdot \text{Al}_{ 2} {\text{O}}_{ 3} \left( {\text{solid}} \right) $$
(A-16)
$$ \Delta G_{5}^{0} = - \,76,613 \, \left( {{\text{J}}/{\text{mol}}} \right) $$
(A-17)

The following desulfurization reaction at 1873 K can be also calculated as

$$ 6 {\text{CaO }}\left( {\text{solid}} \right) + 2 {\text{Al }}\left( {\text{in Ni}} \right) + 3 {\text{S }}\left( {\text{in Ni}} \right) = 3 {\text{CaS }}\left( {\text{solid}} \right) + 3 {\text{CaO}}\cdot \text{Al}_{ 2} {\text{O}}_{ 3} \left( {\text{solid}} \right) $$
(A-18)
$$ \Delta G_{6}^{0} \, = \,\Delta G_{1}^{0} \, - \,2\, \times \,\Delta G_{2}^{0} \, - \,3\, \times \,\Delta G_{3}^{0} \, + \,\Delta G_{5}^{0} \, = \, - \,245{,}606 \, \left( {{\text{J}}/{\text{mol}}} \right) $$
(A-19)

The equilibrium constant K2 is

$$ K_{ 2}=7{,}109{,}430 $$
(A-20)

Therefore, \( { \log }(a_{\text{S}} ) \) is

$$ { \log }\left( {a_{\text{S}} } \right) = - \frac{2}{3}{ \log }\left( {a_{\text{Al}} } \right) + \frac{1}{3}{ \log }\left( { \frac{{a_{\text{CaS}}^{3} \times a_{{3{\text{CaO}} \cdot {\text{Al}}_{2} {\text{O}}_{3} }} }}{{a_{\text{CaO}}^{6} \times K_2}} } \right) $$
(A-21)

The values are \( a_{\text{CaO}} \) = 1 and \( a_{{{\text{Al}}_{2} {\text{O}}_{3} }} \) = 0.06,[32] therefore \( a_{{3{\text{CaO}} \cdot {\text{Al}}_{2} {\text{O}}_{3} }} \) = 0.06 calculated by Eqs. [A-16] and [A-17]. The value of \( a_{{3{\text{CaO}} \cdot {\text{Al}}_{2} {\text{O}}_{3} }} \) is assumed as 0.01 and 0.1 in this calculation. Assuming that \( a_{\text{CaS}} \) = 1, Eq. [A-21] is

$$ { \log }\left( {a_{\text{S}} } \right)\,{ = }\, - \,\frac{2}{3}\log \left( {a_{\text{Al}} } \right)\, - \,2.95\quad \left( {{\text{When}} \, = \,0.0 1} \right) $$
(A-22)
$$ { \log }\left( {a_{\text{S}} } \right)\, = \, - \,\frac{2}{3}\log \left( {a_{\text{Al}} } \right)\, - \,2.62\quad \left( {{\text{When}}\, = \,0. 1} \right) $$
(A-23)

Derivation of log(a Al) and log(a S)

Logarithm of Al activity: aAl can be written by activity coefficient: fAl, and content of Al in the melt: [Al pct].

$$ a_{\text{Al}} = f_{\text{Al}} \left[ {{\text{Pct}}\,{\text{Al}}} \right] $$
(A-24)

In this paper, only Al and S in molten Ni are considered to derive aAl. log(aAl) is written by interaction parameters:\( e_{i}^{j} \) as

$$ \log \left( {a_{\text{Al}} } \right) = e_{\text{Al}}^{\text{Al}} \left[ {{\text{Pct}}\,{\text{Al}}} \right] + e_{\text{Al}}^{\text{S}} \left[ {{\text{Pct}}\,{\text{S}}} \right] + \log \left[ {{\text{Pct}}\,{\text{Al}}} \right] $$
(A-25)

Similar to log(aAl), log(aS) is written as

$$ \log \left( {a_{S} } \right) = e_{\text{S}}^{\text{Al}} \left[ {{\text{Pct}}\,{\text{Al}}} \right] + e_{\text{S}}^{\text{S}} \left[ {{\text{Pct}}\,{\text{S}}} \right] + \log \left[ {{\text{Pct}}\,{\text{S}}} \right] $$
(A-26)

log(aAl) and log(aS) are calculated by these values: \( e_{\text{Al}}^{\text{Al}} \) = 0.08,[29] \( e_{\text{S}}^{\text{Al}} \) = 0.133,[30] \( e_{\text{S}}^{\text{S}} \) = − 0.035,[31] and

$$ e_{\text{Al}}^{\text{S}} \, = \,e_{\text{S}}^{\text{Al}} \, \times \,\frac{{M_{\text{Al}} }}{{M_{\text{S}} }}\, + \,0.434\, \times \,10^{ - 2} \, \times \,\frac{{M_{\text{S}} - M_{\text{Al}} }}{{M_{\text{S}} }}\, = \,0. 1 1 3 $$
(A-27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishimoto, Y., Kono, T., Horie, T. et al. Temperature Dependence of CaO Desulfurization Mechanism in Molten Ni-Base Superalloy. Metall Mater Trans B 52, 1450–1462 (2021). https://doi.org/10.1007/s11663-021-02112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02112-x

Navigation