Skip to main content
Log in

Microstructure Evolution and Phase Identification in Ni-Based Superalloy Bonded by Transient Liquid Phase Bonding

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This study investigates the development of the microstructure in the interconnection zone of an IN718/Al/IN718 couple obtained by the Transient Liquid Phase Bonding (TLPB) process at 1000 °C. The crystal structure, composition and orientation of the phases formed during joining were examined by SEM-EDS EBSD. The results showed that the interconnection zone is a multilayered region, constituted mainly by sigma (σ), Laves and α-Cr phases and the AlNi intermetallic. The evolution of the microstructure over time shows that the topologically close-packed (TCP) phases grow as columnar grains, while the AlNi phase forms exiaquied grains. The AlNi phase is split into two layers, Al-rich and Ni-rich, both having the same crystal structure but different chemical composition. EBSD mapping revealed that there is no grain boundary along the split line, suggesting that splitting results from a solid-state transformation requiring no nucleation. At longer bonding time, the AlNi phase is enriched in Ni and presents nanoprecipitates homogeneosly dispersed. These results provide experimental data that contribute to the understanding of TLPB of superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. C Lippold, S. D. Kiser, and J. N. DuPont: Welding metallurgy and weldability of nickel-base alloys, 1st ed., John Wiley & Sons, Hoboken, New Jersey, 2009, pp. 47-280.

    Google Scholar 

  2. J. R. Davis: ASM specialty handbook: heat-resistant materials, ASM International, 408 Materials Park, OH, 1997, pp. 221-54.

  3. J. Andersson: Superalloys 718, 625, 706 Deriv., Proc. Int. Symp., 8th, Wiley-TMS, Hoboken, New Jersey, 2014, pp. 247-62.

  4. D. L. Olson, T. A. Siewert, S. Liu, and G. R. Edwards: ASM Hadbook, vol. 6, Welding, Brazing, and Soldering, ASM International, USA, 1993, pp. 517-24.

  5. S. H. Kim, C. Kim and C. Jang: Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries, American Society of Mechanical Engineers (ASME), USA, 2018, pp. 1-6.

  6. J. L. Caron and J. W. Sowards: Comprehensive Materials Processing, Elsevier Ltd., 2014, vol. 6, pp 151–179.

    Article  Google Scholar 

  7. D. F. Paulonis, D. S. Duvall and W. A. Owczarski: U.S. Patent No. 3,678,570, U.S. Patent and Trademark Office, Washington, DC, 1972.

  8. G. O. Cook and C. D. Sorensen: J. Mater. Sci., 2011, vol. 46, pp. 5305-5323.

    Article  CAS  Google Scholar 

  9. M. Pouranvari, A. Ekrami and A. H. Kokabi: Weld. J., 2014, vol. 93, pp. 60-68.

    Google Scholar 

  10. W. F. Gale and D. A. Butts: Sci. Technol. Weld. Joining, 2004, vol. 9, pp. 283-300.

    Article  CAS  Google Scholar 

  11. A. Y. Shamsabadi and R. Bakhtiari: J. Alloys Compd., 2016, vol. 685, pp. 896-904.

    Article  CAS  Google Scholar 

  12. M. Pouranvari, A. Ekrami and A.H. Kokabi (2013) Mater. Sci. and Eng. A, 568, 76-82.

    Article  CAS  Google Scholar 

  13. M. Pouranvari, A. Ekrami and A. H. Kokabi: J. Alloys Compd, 2017, vol. 723, pp. 84-91.

    Article  CAS  Google Scholar 

  14. D. Huber, M. Hacksteiner, C. Poletti, F. Warchomicka and M. Stockinger: MATEC Web of Conferences, EDP Science, vol. 14, 2014, p. 10002.

  15. H. Duan, M. Koçak, K. H. Bohm and V. Ventzke: Sci. Technol. Weld. Joining, 2004, vol. 9, pp. 513-518.

    Article  CAS  Google Scholar 

  16. S. Sommadossi, G. Aurelio and G. J. Cuello: Journal of Physics: Conference Series, IOP Publishing, 2011, vol. 325, p. 012026.

    Google Scholar 

  17. A. Urrutia, S. Tumminello, S.F. Aricó and S. Sommadossi: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2014, vol. 44, pp. 108-113.

    Article  CAS  Google Scholar 

  18. H. Baker: ASM Handbook, vol. 3, Alloy Phase Diagrams, ASM international, Materials Park, OH, 1992, pp. 225–2283

  19. J. J Schirra, R. H. Caless, and R. W. Hatala: Superalloys 718, 625 Deriv., The Minerals. Metals & Materials Society, Edited by EA Loria, 1991, pp. 375–88.

  20. C. T Sims, N. S. Stoloff and W. C. Hagel (Eds.): Superalloys II,Wiley, NY, 1987.

    Google Scholar 

  21. G. W. Goward and L. W.Cannon: Eng. Gas Turbines Power, 1988, vol. 110, pp. 150-154.

    Article  CAS  Google Scholar 

  22. R. Pillai, A. Jalowicka, T. Galiullin, D. Naumenko, M. Ernsberger, R. Herzog, and W. J. Quadakkers: Calphad: Comput. Coupling Phase Diagrams Thermochem., 2019, vol. 65, pp. 340-345

    Article  CAS  Google Scholar 

  23. W. Leng, R. Pillai, D. Naumenko, T. Galiullin and W. J. Quadakkers: Corros. Sci., 2020, vol. 167, p. 108494.

    Article  CAS  Google Scholar 

  24. W. Leng, R. Pillai, P. Huczkowski, D. Naumenko and W. J. Quadakkers: Surf. Coat. Technol., 2018, vol. 354, pp. 268-280.

    Article  CAS  Google Scholar 

  25. A. E. PazyPuente, and D. C. Dunand (2020) Intermetallics, 117, 106634.

    Article  CAS  Google Scholar 

  26. M. Poliserpi, R. Buzolin, R. Boeri, C. Poletti and S. Sommadossi: Metall. Mater. Trans. B, 2020, vol. 51, pp. 916-924.

    Article  CAS  Google Scholar 

  27. W. J Nowak: J. Anal. At. Spectrom., 2017, vol. 32, pp. 1730-1738.

    Article  CAS  Google Scholar 

  28. A. Paul, A. A. Kodentsov and F. J. J. Van Loo: Acta Mater., 2004, vol. 52, pp. 4041-4048.

    Article  CAS  Google Scholar 

  29. R. Bianco and R. A. Rapp: J. Electrochem. Soc., 1993, vol. 140, p. 1181.

    Article  CAS  Google Scholar 

  30. H. Zahedi, F. S. Nogorani and M.Safari: Met. Mater. Int., 2019, pp.1-9.

  31. E. Pauletti, A. S. C. M. d’Oliveira: J. Vac. Sci. Technol. A, 2018, vol. 36, p. 041504.

    Article  Google Scholar 

Download references

Acknowledgments

Authors wish to express their gratitude to CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), and Christian Doppler Forschungsgesellschaft, fostered in the frame of the D-1303000107/CD-Labor for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Poliserpi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 7, 2020; accepted February 25, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poliserpi, M., Buzolin, R., Boeri, R. et al. Microstructure Evolution and Phase Identification in Ni-Based Superalloy Bonded by Transient Liquid Phase Bonding. Metall Mater Trans B 52, 1695–1707 (2021). https://doi.org/10.1007/s11663-021-02136-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02136-3

Navigation