Skip to main content
Log in

Constructing a Complete Integral of the Hamilton–Jacobi Equation on Pseudo-Riemannian Spaces with Simply Transitive Groups of Motions

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this work, an efficient method for constructing a complete integral of the geodesic Hamilton–Jacobi equation on pseudo-Riemannian manifolds with simply transitive groups of motions is suggested. The method is based on using a special transition to canonical coordinates on coadjoint orbits of the group of motion. As a non-trivial example, we consider the problem of constructing a complete integral of the geodesic Hamilton–Jacobi equation in the McLenaghan–Tariq–Tupper spacetime. An essential feature of this example is that the Hamilton-Jacobi equation is not separable in the corresponding configuration space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eisenhart, L.: Riemannian Geometry. Princeton University Press, Princeton (1966)

    MATH  Google Scholar 

  2. Goldstein, H., Poole, C., Safko, J.: Classical Mechanics. Addison-Wesley, Boston (2001)

    MATH  Google Scholar 

  3. Arnol’d, V.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Book  Google Scholar 

  4. Woodhouse, N.: Killing tensors and the separation of the Hamilton–Jacobi equation. Commun. Math. Phys. 44, 9–38 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  5. Shapovalov, V.N.: Stäckel spaces. Sib. Math. J. 20, 790–800 (1979)

    Article  Google Scholar 

  6. Kalnins, E.G., Miller, W. Jr: Killing tensors and variable separation for Hamilton–Jacobi and Helmholtz equations. SIAM J. Math. Anal. 11, 1011–1026 (1980)

    Article  MathSciNet  Google Scholar 

  7. Bagrov, V.G., Obukhov, V.V.: Complete separation of variables in the free Hamilton–Jacobi equation. Theor. Math. Phys. 97, 1275–1289 (1993)

    Article  MathSciNet  Google Scholar 

  8. Benenti, S., Chanu, C., Rastelli, G.: Variable separation for natural Hamiltonians with scalar and vector potentials on Riemannian manifolds. J. Math. Phys. 42, 2065–2091 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  9. Benenti, S.: Separability in Riemannian manifolds. SIGMA 12, 013 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Eisenhart, L.P.: Separable systems of stäckel. Ann. Math. 284–305 (1934)

  11. Kalnins, E.G., Miller, W. Jr: Killing tensors and nonorthogonal variable separation for Hamilton–Jacobi equations. SIAM J. Math. Anal. 12, 617–629 (1981)

    Article  MathSciNet  Google Scholar 

  12. Klishevich, V.V.: On the existence of the second Dirac operator in Riemannian space. Class. Quantum Gravity. 17, 305–318 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. Babelon, O., Bernard, D., Talon, M.: Introduction to Classical Integrable Systems. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  14. Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5, 121–130 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  15. Marsden, J.E., Abraham, R.: Foundations of Mechanics. Addison-wesley Reading, MA (1978)

    MATH  Google Scholar 

  16. Wang, H.: Hamilton–jacobi theorems for regular reducible Hamiltonian systems on a cotangent bundle. J. Geom. Phys. 119, 82–102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. de León, M., de Diego, D.M., Vaquero, M.: Hamilton–jacobi theory, symmetries and coisotropic reduction. J. Math. Pures Appl. 107, 591–614 (2017)

    Article  MathSciNet  Google Scholar 

  18. McLenaghan, R.G., Tariq, N.: A new solution of the Einstein–Maxwell equations. J. Math. Phys. 16, 2306–2312 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  19. Tariq, N., Tupper, B.A.: Class of algebraically general solutions of the Einstein–Maxwell equations for non-null electromagnetic fields. Gen. Relativ. Gravit. 6, 345–360 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  20. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of the Einstein Field Equations. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  21. Shirokov, I.: Darboux coordinates on K-orbits and the spectra of Casimir operators on Lie groups. Theor. Math. Phys. 123, 754–767 (2000)

    Article  MathSciNet  Google Scholar 

  22. Kamalin, S.A., Perelomov, A.M.: Construction of canonical coordinates on polarized coadjoint orbits of Lie groups. Commun. Math. Phys. 97, 553–568 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  23. Adams, M.R., Harnad, J., Hurtubise, J.: Darboux coordinates and Liouville–Arnold integration in loop algebras. Commun. Math. Phys. 155, 385–413 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  24. Kirillov, A.A.: Elements of the Theory of Representations. Springer, Berlin (1976)

    Book  Google Scholar 

  25. Kostant, B.: Quantization and Unitary Representations. Lectures in Modern Analysis and Applications III, pp 87–208. Springer, New York (1970)

    Google Scholar 

  26. Dixmier, J.: Enveloping Algebras. North-Holland Publishing Co, Amsterdam (1977)

    MATH  Google Scholar 

  27. Magazev, A.A., Mikheyev, V.V., Shirokov, I.V.: Computation of composition functions and invariant vector fields in terms of structure constants of associated Lie algebras. SIGMA 11, 066 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Baranovskii, S., Shirokov, I.: Deformations of vector fields and canonical coordinates on coadjoint orbits. Sib. Math. J. 50, 580–586 (2009)

    Article  MathSciNet  Google Scholar 

  29. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, Cambridge (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

The author expresses his deep gratitude to Igor V. Shirokov for his constant and fruitful discussions and support. Dr. S. V. Danilova is gratefully acknowledged for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Magazev.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magazev, A.A. Constructing a Complete Integral of the Hamilton–Jacobi Equation on Pseudo-Riemannian Spaces with Simply Transitive Groups of Motions. Math Phys Anal Geom 24, 11 (2021). https://doi.org/10.1007/s11040-021-09385-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-021-09385-3

Keywords

Mathematics Subject Classification (2010)

Navigation