Skip to main content
Log in

Analysis of water wave interaction with multiple submerged porous reef balls

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

This paper investigates the interaction of water waves with a group of submerged porous reef balls, which are hemispheres with centers lying on a plane seabed. An analytical solution based on potential theory is developed. In the solving process, the series solutions of the velocity potentials in the exterior and internal fluid domains of the reef balls are obtained by means of multipole expansions and separation of variables, respectively. The unknown expansion coefficients in the velocity potentials are determined by matching the porous boundary condition on the surface of each reef ball, where the vital point is the shift of multipoles among different local spherical coordinate systems. The special case of multiple impermeable reef balls is also considered. The wave forces in the sway, surge, and heave directions acting on the reef balls as well as the surface elevation near the structures are calculated. The predictions of the analytical solution are in excellent agreement with the numerical results of an independently developed three-dimensional multidomain boundary-element method solution. Case studies show that the hydrodynamic interaction is obvious only when reef balls are very close. Moreover, the feasibility of the submerged porous breakwaters composed of a series of porous reef balls with appropriate arrangements is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Kagemoto H, Yue DKP (1986) Interactions among multiple three-dimensional bodies in water waves: an exact algebraic method. J Fluid Mech 166:189–209

    Article  MATH  Google Scholar 

  2. Spring BH, Monkmeyer PL (1974) Interaction of plane waves with vertical cylinders. In: Proceedings of 14th international conference on coastal engineering, Copenhagen, pp 1828–1845

  3. Linton CM, Evans DV (1990) The interaction of waves with arrays of vertical circular cylinders. J Fluid Mech 215:549–569

    Article  MathSciNet  MATH  Google Scholar 

  4. Chatjigeorgiou IK (2011) Three dimensional wave scattering by arrays of elliptical and circular cylinders. Ocean Eng 38:1480–1494

    Article  Google Scholar 

  5. Chatjigeorgiou IK (2019) Semi-analytical solution for the water wave diffraction by arrays of truncated circular cylinders in front of a vertical wall. Appl Ocean Res 88:147–159

    Article  Google Scholar 

  6. Cong PW, Bai W, Teng B (2019) Analytical modeling of water wave interaction with a bottom-mounted surface-piercing porous cylinder in front of a vertical wall. J Fluids Struct 88:282–314

    Article  Google Scholar 

  7. Zheng SM, Zhang YL, Liu YY, Iglesidas G (2019) Wave radiation from multiple cylinders of arbitrary cross sections. Ocean Eng 184:11–22

    Article  Google Scholar 

  8. Wu GX (1995) The interaction of water waves with a group of submerged spheres. Appl Ocean Res 17(3):165–184

    Article  Google Scholar 

  9. Arnouil DS (2006) Shoreline response for a Reef Ball submerged breakwater system offshore of Grand Cayman Island. Master Thesis, Florida Institute of Technology

  10. Sherman RL, Gilliam DS, Spieler RE (2002) Artificial reef design: void space, complexity, and attractants. ICES J Mar Sci 59:S196–S200

    Article  Google Scholar 

  11. Armono HD, Hall KR, Swamidas ASJ (2001) Wave field around hemispherical shape artificial reefs used for fish habitat. In: Canadian coastal conference

  12. Chapman GJD (2005) A weakly singular integral equation approach for water wave problems. PhD Thesis, University of Bristol, Bristol

  13. Li AJ, Sun XL, Liu Y, Li HJ (2019) Analysis of water wave scattering by a submerged perforated reef ball using multipole method. Meccanica 54:1747–1765

    Article  MathSciNet  Google Scholar 

  14. Buccino M, Vita ID, Calabrese M (2013) Engineering modeling of wave transmission of reef balls. J Waterway Port Coast Ocean Eng 140(4):1–18

    Google Scholar 

  15. Armono HD (2003) Wave transmission on submerged breakwaters made of hollow hemispherical shape artificial reefs. In: Canadian coastal conferences

  16. Armono HD (2004) Wave transmission over hemispherical shape artificial reefs. In: Marine technology conference

  17. Buccino M, Vita ID, Calabrese M (2013) Predicting wave transmission past Reef BallTM submerged breakwaters. J Coast Res 65:171–176

    Article  Google Scholar 

  18. Mei CC, Liu PLF, Ippen AT (1974) Quadratic loss and scattering of long waves. J Waterways Harbors Coast Eng Div 100(3):217–239

    Article  Google Scholar 

  19. Zhu S, Chwang AT (2001) Investigations on the reflection behaviour of a slotted seawall. Coast Eng 43(2):93–104

    Article  Google Scholar 

  20. Molin B (2011) Hydrodynamic modeling of perforated structures. Appl Ocean Res 33(1):1–11

    Article  Google Scholar 

  21. An S, Faltinsen OM (2013) An experimental and numerical study of heave added mass and damping of horizontally submerged and perforated rectangular plates. J Fluids Struct 39:87–101

    Article  Google Scholar 

  22. Liu Y, Li HJ (2017) Iterative multi-domain BEM solution for water wave reflection by perforated caisson breakwaters. Eng Anal Bound Elem 77:70–80

    Article  MathSciNet  MATH  Google Scholar 

  23. Chwang AT (1983) A porous-wavemaker theory. J Fluid Mech 132:395–406

    Article  MATH  Google Scholar 

  24. Yu XP (1995) Diffraction of water waves by porous breakwaters. J Waterway Port Coast Ocean Eng 121(6):275–282

    Article  Google Scholar 

  25. Li YC, Liu Y, Teng B (2006) Porous effect parameter of thin permeable plates. Coast Eng J 48(4):309–336

    Article  Google Scholar 

  26. Sankarbabu K, Sannasiraj SA, Sundar V (2007) Interaction of regular waves with a group of dual porous circular cylinders. Appl Ocean Res 29(4):180–190

    Article  Google Scholar 

  27. Liu Y, Li YC, Teng B, Jiang JJ, Ma BL (2008) Total horizontal and vertical forces of irregular waves on partially perforated caisson breakwaters. Coast Eng 55:537–552

    Article  Google Scholar 

  28. Zhao FF, Bao WG, Kinoshita T, Itakura H (2010) Interaction of waves and a porous cylinder with an inner horizontal porous plate. Appl Ocean Res 32(2):252–259

    Article  Google Scholar 

  29. Suh KD, Kim YW, Ji CH (2011) An empirical formula for friction coefficient of a perforated wall with vertical slits. Coast Eng 58(1):85–93

    Article  Google Scholar 

  30. Liu Y, Li YC (2016) Predictive formulas in terms of Keulegan–Carpenter numbers for the resistance coefficients of perforated walls in Jarlan-type caissons. Ocean Eng 114:101–114

    Article  Google Scholar 

  31. Thorne RC (1953) Multipole expansion in the theory of surface waves. Math Proc Camb Philos Soc 49(4):707–716

    Article  MathSciNet  MATH  Google Scholar 

  32. Davis AMJ (1974) Short surface waves in the presence of a submerged sphere. SIAM J Appl Math 27:464–478

    Article  MathSciNet  MATH  Google Scholar 

  33. Steinborn EO, Ruedenberg K (1973) Rotation and translation of regular and irregular solid spherical harmonics. Adv Quantum Chem 7:1–81

    Article  Google Scholar 

  34. Gradshteyn IS, Ryzhik IM (2007) Table of integrals, series, and products, 7th edn. Academic Press, New York

    MATH  Google Scholar 

  35. Liu Y, Li HJ (2013) Analysis of oblique wave interaction with a submerged perforated semicircular breakwater. J Eng Math 83(1):23–36

    Article  MathSciNet  MATH  Google Scholar 

  36. Cho IH, Kim MH (2000) Interactions of horizontal porous flexible membrane with waves. J Waterway Port Coast Ocean Eng 126(5):245–253

    Article  Google Scholar 

  37. Chwang AT, Wu JH (1994) Wave scattering by submerged porous disk. J Eng Mech 120(12):2575–2587

    Article  Google Scholar 

  38. Lee MM, Chwang AT (2000) Scattering and radiation of water waves by permeable barriers. Phys Fluids 12(1):54–65

    Article  MathSciNet  MATH  Google Scholar 

  39. Siddorn P, Eatock Taylor R (2008) Diffraction and independent radiation by an array of floating cylinders. Ocean Eng 35:1289–1303

    Article  Google Scholar 

  40. Bai W, Feng X, Eatock Taylor R, Ang KK (2014) Fully nonlinear analysis of near-trapping phenomenon around an array of cylinders. Appl Ocean Res 44:71–81

    Article  Google Scholar 

  41. Chatjigeorgiou IK, Katsardi V (2018) Hydrodynamics and near trapping effects in arrays of multiple elliptical cylinders in waves. Ocean Eng 157:121–139

    Article  Google Scholar 

  42. Franco L (1994) Vertical breakwaters: the Italian experience. Coast Eng 22:31–55

    Article  Google Scholar 

  43. Franco L, de Gerloni M, Passoni G, Zacconi D (1998) Wave forces on solid and perforated caisson breakwaters: comparison of field and laboratory measurements. In: Proceedings of the 26th coastal engineering conference, Copenhagen, Denmark, pp 1945–1958

  44. Liu Y, Faraci C (2014) Analysis of orthogonal wave reflection by a caisson with open front chamber filled with sloping rubble mound. Coast Eng 91:151–163

    Article  Google Scholar 

  45. Harris LE (2001) Submerged reef structures for habitat enhancement and shoreline erosion abatement. Coastal Engineering Technical Note, CETN-III-xx, USACE

  46. Teng B, Ning DZ, Zhang XT (2004) Wave radiation by a uniform cylinder in front of a vertical wall. Ocean Eng 31:201–224

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant nos. 51725903 and 51490675) and the Taishan Scholar Project of Shandong Province (grant no. ts20190915).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Shift of multipoles among different spherical coordinate systems

Separating the real and imaginary parts of Eq. (36), we obtain

$$\begin{aligned} & r_{p}^{ - n - 1} P_{n}^{m} (\cos \theta_{p} )\cos (m\beta_{p} ) \\ & \quad = \sum\limits_{{m^{\prime} = 0}}^{\infty } {\sum\limits_{{n^{\prime} = m^{\prime}}}^{\infty } {r_{q}^{{n^{\prime}}} P_{{n^{\prime}}}^{{m^{\prime}}} (\cos \theta_{q} )\left[ {W_{1} (n,m,n^{\prime},m^{\prime},p,q)\cos (m^{\prime}\beta_{q} ) + W_{2} (n,m,n^{\prime},m^{\prime},p,q)\sin (m^{\prime}\beta_{q} )} \right]} },\end{aligned}$$
(A1)
$$\begin{aligned} & r_{p}^{ - n - 1} P_{n}^{m} (\cos \theta_{p} )\sin (m\beta_{p} ) \\ & \quad = \sum\limits_{{m^{\prime} = 0}}^{\infty } {\sum\limits_{{n^{\prime} = m^{\prime}}}^{\infty } {r_{q}^{{n^{\prime}}} P_{{n^{\prime}}}^{{m^{\prime}}} (\cos \theta_{q} )\left[ {W_{3} (n,m,n^{\prime},m^{\prime},p,q)\cos (m^{\prime}\beta_{q} ) + W_{4} (n,m,n^{\prime},m^{\prime},p,q)\sin (m^{\prime}\beta_{q} )} \right]} },\end{aligned} $$
(A2)

where

$$ W_{1} (n,m,n^{\prime},m^{\prime},p,q) = \frac{{\varepsilon_{{m^{\prime}}} ( - 1)^{{n^{\prime}}} r_{pq}^{{ - n - n^{\prime} - 1}} }}{{2(n - m)!(n^{\prime} + m^{\prime})!}}\left[ \begin{gathered} (n + n^{\prime} - m - m^{\prime})!P_{{n + n^{\prime}}}^{{m + m^{\prime}}} (\cos \theta_{pq} )\cos ((m + m^{\prime})\beta_{pq} ) \hfill \\ + ( - 1)^{{m^{\prime}}} (n + n^{\prime} - m + m^{\prime})!P_{{n + n^{\prime}}}^{{m - m^{\prime}}} (\cos \theta_{pq} )\cos ((m - m^{\prime})\beta_{pq} ) \hfill \\ \end{gathered} \right], $$
(A3)
$$ W_{2} (n,m,n^{\prime},m^{\prime},p,q) = \frac{{\varepsilon_{{m^{\prime}}} ( - 1)^{{n^{\prime}}} r_{pq}^{{ - n - n^{\prime} - 1}} }}{{2(n - m)!(n^{\prime} + m^{\prime})!}}\left[ \begin{gathered} (n + n^{\prime} - m - m^{\prime})!P_{{n + n^{\prime}}}^{{m + m^{\prime}}} (\cos \theta_{pq} )\sin ((m + m^{\prime})\beta_{pq} ) \hfill \\ - ( - 1)^{{m^{\prime}}} (n + n^{\prime} - m + m^{\prime})!P_{{n + n^{\prime}}}^{{m - m^{\prime}}} (\cos \theta_{pq} )\sin ((m - m^{\prime})\beta_{pq} ) \hfill \\ \end{gathered} \right], $$
(A4)
$$ W_{3} (n,m,n^{\prime},m^{\prime},p,q) = \frac{{\varepsilon_{{m^{\prime}}} ( - 1)^{{n^{\prime}}} r_{pq}^{{ - n - n^{\prime} - 1}} }}{{2(n - m)!(n^{\prime} + m^{\prime})!}}\left[ \begin{gathered} (n + n^{\prime} - m - m^{\prime})!P_{{n + n^{\prime}}}^{{m + m^{\prime}}} (\cos \theta_{pq} )\sin ((m + m^{\prime})\beta_{pq} ) \hfill \\ + ( - 1)^{{m^{\prime}}} (n + n^{\prime} - m + m^{\prime})!P_{{n + n^{\prime}}}^{{m - m^{\prime}}} (\cos \theta_{pq} )\sin ((m - m^{\prime})\beta_{pq} ) \hfill \\ \end{gathered} \right], $$
(A5)
$$ W_{4} (n,m,n^{\prime},m^{\prime},p,q) = \frac{{\varepsilon_{{m^{\prime}}} ( - 1)^{{n^{\prime}}} r_{pq}^{{ - n - n^{\prime} - 1}} }}{{2(n - m)!(n^{\prime} + m^{\prime})!}}\left[ \begin{gathered} - (n + n^{\prime} - m - m^{\prime})!P_{{n + n^{\prime}}}^{{m + m^{\prime}}} (\cos \theta_{pq} )\cos ((m + m^{\prime})\beta_{pq} ) \hfill \\ + ( - 1)^{{m^{\prime}}} (n + n^{\prime} - m + m^{\prime})!P_{{n + n^{\prime}}}^{{m - m^{\prime}}} (\cos \theta_{pq} )\cos ((m - m^{\prime})\beta_{pq} ) \hfill \\ \end{gathered} \right]. $$
(A6)

By applying Eq. (31), the multipoles in Eqs. (15)–(18) are finally rewritten as

$$ \begin{aligned} \varphi_{nm}^{p,1} & = \sum\limits_{{m^{\prime} = 0}}^{\infty } {\sum\limits_{{n^{\prime} = m^{\prime}}}^{\infty } {r_{q}^{{2n^{\prime}}} P_{{2n^{\prime}}}^{{2m^{\prime}}} (\cos \theta_{q} )\left[ \begin{gathered} Q_{1} (2n,2m,2n^{\prime},2m^{\prime},p,q)\cos (2m^{\prime}\beta_{q} ) \hfill \\ + Q_{2} (2n,2m,2n^{\prime},2m^{\prime},p,q)\sin (2m^{\prime}\beta_{q} ) \hfill \\ \end{gathered} \right]} } \hfill \\ &\quad + \sum\limits_{{m^{\prime} = 0}}^{\infty } {\sum\limits_{{n^{\prime} = m^{\prime}}}^{\infty } {r_{q}^{{2n^{\prime} + 1}} P_{{2n^{\prime} + 1}}^{{2m^{\prime} + 1}} (\cos \theta_{q} )\left[ \begin{gathered} Q_{1} (2n,2m,2n^{\prime} + 1,2m^{\prime} + 1,p,q)\cos ((2m^{\prime} + 1)\beta_{q} ) \hfill \\ + Q_{2} (2n,2m,2n^{\prime} + 1,2m^{\prime} + 1,p,q)\sin ((2m^{\prime} + 1)\beta_{q} ) \hfill \\ \end{gathered} \right]} }, \hfill \\ \end{aligned} $$
(A7)
$$ \begin{aligned} \varphi_{nm}^{p,2} & = \sum\limits_{{m^{\prime} = 0}}^{\infty } {\sum\limits_{{n^{\prime} = m^{\prime}}}^{\infty } {r_{q}^{{2n^{\prime}}} P_{{2n^{\prime}}}^{{2m^{\prime}}} (\cos \theta_{q} )\left[ \begin{gathered} Q_{3} (2n,2m,2n^{\prime},2m^{\prime},p,q)\cos (2m^{\prime}\beta_{q} ) \hfill \\ + Q_{4} (2n,2m,2n^{\prime},2m^{\prime},p,q)\sin (2m^{\prime}\beta_{q} ) \hfill \\ \end{gathered} \right]} } \hfill \\ &\quad + \sum\limits_{{m^{\prime} = 0}}^{\infty } {\sum\limits_{{n^{\prime} = m^{\prime}}}^{\infty } {r_{q}^{{2n^{\prime} + 1}} P_{{2n^{\prime} + 1}}^{{2m^{\prime} + 1}} (\cos \theta_{q} )\left[ \begin{gathered} Q_{3} (2n,2m,2n^{\prime} + 1,2m^{\prime} + 1,p,q)\cos ((2m^{\prime} + 1)\beta_{q} ) \hfill \\ + Q_{4} (2n,2m,2n^{\prime} + 1,2m^{\prime} + 1,p,q)\sin ((2m^{\prime} + 1)\beta_{q} ) \hfill \\ \end{gathered} \right]} }, \hfill \\ \end{aligned} $$
(A8)
$$ \begin{aligned} \varphi_{nm}^{p,3} & = \sum\limits_{{m^{\prime} = 0}}^{\infty } {\sum\limits_{{n^{\prime} = m^{\prime}}}^{\infty } {r_{q}^{{2n^{\prime}}} P_{{2n^{\prime}}}^{{2m^{\prime}}} (\cos \theta_{q} )\left[ \begin{gathered} Q_{1} (2n + 1,2m + 1,2n^{\prime},2m^{\prime},p,q)\cos (2m^{\prime}\beta_{q} ) \hfill \\ + Q_{2} (2n + 1,2m + 1,2n^{\prime},2m^{\prime},p,q)\sin (2m^{\prime}\beta_{q} ) \hfill \\ \end{gathered} \right]} } \hfill \\&\quad + \sum\limits_{{m^{\prime} = 0}}^{\infty } {\sum\limits_{{n^{\prime} = m^{\prime}}}^{\infty } {r_{q}^{{2n^{\prime} + 1}} P_{{2n^{\prime} + 1}}^{{2m^{\prime} + 1}} (\cos \theta_{q} )\left[ \begin{gathered} Q_{1} (2n + 1,2m + 1,2n^{\prime} + 1,2m^{\prime} + 1,p,q)\cos ((2m^{\prime} + 1)\beta_{q} ) \hfill \\ + Q_{2} (2n + 1,2m + 1,2n^{\prime} + 1,2m^{\prime} + 1,p,q)\sin ((2m^{\prime} + 1)\beta_{q} ) \hfill \\ \end{gathered} \right]} }, \hfill \\ \end{aligned} $$
(A9)
$$ \begin{aligned} \varphi_{nm}^{p,4}&= \sum\limits_{{m^{\prime} = 0}}^{\infty } {\sum\limits_{{n^{\prime} = m^{\prime}}}^{\infty } {r_{q}^{{2n^{\prime}}} P_{{2n^{\prime}}}^{{2m^{\prime}}} (\cos \theta_{q} )\left[ \begin{gathered} Q_{3} (2n + 1,2m + 1,2n^{\prime},2m^{\prime},p,q)\cos (2m^{\prime}\beta_{q} ) \hfill \\ + Q_{4} (2n + 1,2m + 1,2n^{\prime},2m^{\prime},p,q)\sin (2m^{\prime}\beta_{q} ) \hfill \\ \end{gathered} \right]} } \hfill \\ & \quad + \sum\limits_{{m^{\prime} = 0}}^{\infty } {\sum\limits_{{n^{\prime} = m^{\prime}}}^{\infty } {r_{q}^{{2n^{\prime} + 1}} P_{{2n^{\prime} + 1}}^{{2m^{\prime} + 1}} (\cos \theta_{q} )\left[ \begin{gathered} Q_{3} (2n + 1,2m + 1,2n^{\prime} + 1,2m^{\prime} + 1,p,q)\cos ((2m^{\prime} + 1)\beta_{q} ) \hfill \\ + Q_{4} (2n + 1,2m + 1,2n^{\prime} + 1,2m^{\prime} + 1,p,q)\sin ((2m^{\prime} + 1)\beta_{q} ) \hfill \\ \end{gathered} \right]} }, \hfill \\ \end{aligned} $$
(A10)

where

$$ Q_{s} (n,m,n^{\prime},m^{\prime},p,q) = W_{s} (n,m,n^{\prime},m^{\prime},p,q) + U_{s} (n,m,n^{\prime},m^{\prime},p,q), \quad s = 1,2,3,4, $$
(A11)
$$ U_{1} (n,m,n^{\prime},m^{\prime},p,q) = \frac{{\varepsilon_{{m^{\prime}}} ( - 1)^{{m^{\prime}}} {\text{i}}^{{m + m^{\prime}}} }}{{2\pi (n - m)!(n^{\prime} + m^{\prime})!}}\int_{L}^{{}} {\int_{ - \pi }^{\pi } {{\hbar} (\mu )\mu^{{n + n^{\prime}}} \cos (m\gamma )\cos (m^{\prime}\gamma ){\text{e}}^{{{\text{i}} \mu (x_{q} - x_{p} )\cos \gamma + {\text{i}} \mu (y_{q} - y_{p} )\sin \gamma }} {\text{d}} \gamma\; {\text{d}} \mu } }, $$
(A12)
$$ U_{2} (n,m,n^{\prime},m^{\prime},p,q) = \frac{{\varepsilon_{{m^{\prime}}} ( - 1)^{{m^{\prime}}} {\text{i}}^{{m + m^{\prime}}} }}{{2\pi (n - m)!(n^{\prime} + m^{\prime})!}}\int_{L}^{{}} {\int_{ - \pi }^{\pi } {{\hbar} (\mu )\mu^{{n + n^{\prime}}} \cos (m\gamma )\sin (m^{\prime}\gamma ){\text{e}}^{{{\text{i}} \mu (x_{q} - x_{p} )\cos \gamma + {\text{i}} \mu (y_{q} - y_{p} )\sin \gamma }} {\text{d}} \gamma\; {\text{d}} \mu,} } $$
(A13)
$$ U_{3} (n,m,n^{\prime},m^{\prime},p,q) = \frac{{\varepsilon_{{m^{\prime}}} ( - 1)^{{m^{\prime}}} {\text{i}}^{{m + m^{\prime}}} }}{{2\pi (n - m)!(n^{\prime} + m^{\prime})!}}\int_{L}^{{}} {\int_{ - \pi }^{\pi } {{\hbar} (\mu )\mu^{{n + n^{\prime}}} \sin (m\gamma )\cos (m^{\prime}\gamma ){\text{e}}^{{{\text{i}} \mu (x_{q} - x_{p} )\cos \gamma + {\text{i}} \mu (y_{q} - y_{p} )\sin \gamma }} {\text{d}} \gamma\; {\text{d}} \mu,} } $$
(A14)
$$ U_{4} (n,m,n^{\prime},m^{\prime},p,q) = \frac{{\varepsilon_{{m^{\prime}}} ( - 1)^{{m^{\prime}}} {\text{i}}^{{m + m^{\prime}}} }}{{2\pi (n - m)!(n^{\prime} + m^{\prime})!}}\int_{L}^{{}} {\int_{ - \pi }^{\pi } {{\hbar} (\mu )\mu^{{n + n^{\prime}}} \sin (m\gamma )\sin (m^{\prime}\gamma ){\text{e}}^{{{\text{i}} \mu (x_{q} - x_{p} )\cos \gamma + {\text{i}} \mu (y_{q} - y_{p} )\sin \gamma }} {\text{d}} \gamma\; {\text{d}} \mu,} } $$
(A15)

Applying the definition in Eq. (37) and the relations in Eqs. (22) and (23), Eqs. (A12)–(A15) are further written as

$$ U_{1} (n,m,n^{\prime},m^{\prime},p,q) = \frac{{\varepsilon_{{m^{\prime}}} ( - 1)^{{m^{\prime} + m}} }}{{2(n - m)!(n^{\prime} + m^{\prime})!}}\int_{L}^{{}} {{\hbar} (\mu )\mu^{{n + n^{\prime}}} \left[ \begin{gathered} ( - 1)^{{m^{\prime}}} \cos ((m + m^{\prime})\beta_{pq} ){\text{J}}_{{m + m^{\prime}}} (\mu R_{pq} ) \hfill \\ + \cos ((m - m^{\prime})\beta_{pq} ){\text{J}}_{{m - m^{\prime}}} (\mu R_{pq} ) \hfill \\ \end{gathered} \right]{\text{d}} \mu,} $$
(A16)
$$ U_{2} (n,m,n^{\prime},m^{\prime},p,q) = \frac{{\varepsilon_{{m^{\prime}}} ( - 1)^{{m^{\prime} + m}} }}{{2(n - m)!(n^{\prime} + m^{\prime})!}}\int_{L}^{{}} {{\hbar} (\mu )\mu^{{n + n^{\prime}}} \left[ \begin{gathered} ( - 1)^{{m^{\prime}}} \sin ((m + m^{\prime})\beta_{pq} ){\text{J}}_{{m + m^{\prime}}} (\mu R_{pq} ) \hfill \\ - \sin ((m - m^{\prime})\beta_{pq} ){\text{J}}_{{m - m^{\prime}}} (\mu R_{pq} ) \hfill \\ \end{gathered} \right]{\text{d}} \mu,} $$
(A17)
$$ U_{3} (n,m,n^{\prime},m^{\prime},p,q) = \frac{{\varepsilon_{{m^{\prime}}} ( - 1)^{{m^{\prime} + m}} }}{{2(n - m)!(n^{\prime} + m^{\prime})!}}\int_{L}^{{}} {{\hbar} (\mu )\mu^{{n + n^{\prime}}} \left[ \begin{gathered} ( - 1)^{{m^{\prime}}} \sin ((m + m^{\prime})\beta_{pq} ){\text{J}}_{{m + m^{\prime}}} (\mu R_{pq} ) \hfill \\ + \sin ((m - m^{\prime})\beta_{pq} ){\text{J}}_{{m - m^{\prime}}} (\mu R_{pq} ) \hfill \\ \end{gathered} \right]{\text{d}} \mu,} $$
(A18)
$$ U_{4} (n,m,n^{\prime},m^{\prime},p,q) = \frac{{\varepsilon_{{m^{\prime}}} ( - 1)^{{m^{\prime} + m}} }}{{2(n - m)!(n^{\prime} + m^{\prime})!}}\int_{L}^{{}} {{\hbar} (\mu )\mu^{{n + n^{\prime}}} \left[ \begin{gathered} - ( - 1)^{{m^{\prime}}} \cos ((m + m^{\prime})\beta_{pq} ){\text{J}}_{{m + m^{\prime}}} (\mu R_{pq} ) \hfill \\ + \cos ((m - m^{\prime})\beta_{pq} ){\text{J}}_{{m - m^{\prime}}} (\mu R_{pq} ) \hfill \\ \end{gathered} \right]{\text{d}} \mu }. $$
(A19)

Appendix B: Derivation of the linear system for perforated reef balls

Substituting velocity potentials into the first equals sign of Eq. (13), multiplying both sides of the resulting equation by

$$P_{{2n^{\prime}}}^{{2m^{\prime}}} (\cos \theta_{q} )\sin \theta_{q} \left\{ \begin{gathered} \cos (2m^{\prime}\beta_{q} ) \hfill \\ \sin (2m^{\prime}\beta_{q} ) \hfill \\ \end{gathered} \right.\;\text{or}\;P_{{2n^{\prime} + 1}}^{{2m^{\prime} + 1}} (\cos \theta_{q} )\sin \theta_{q} \left\{ \begin{gathered} \cos((2m^{\prime} + 1)\beta_{q} ), \hfill \\ \sin ((2m^{\prime} + 1)\beta_{q} ), \hfill \\ \end{gathered} \right.$$

, then integrating with respect to βq and θq from 0 to 2π and 0 to π/2, respectively, and applying the orthogonality of trigonometric function and associated Legendre function

$$ \int_{0}^{\pi /2} {P_{n}^{m} (\cos \theta_{q} )P_{s}^{m} (\cos \theta_{q} )\sin \theta_{q} {\text{d}} \theta_{q} } = \frac{{\delta_{ns} (n + m)!}}{(2n + 1)(n - m)!}, $$
(B1)

where the values of n + m and s + m are even, δns = 1 for n = s and δns = 0 for n ≠ s, we obtain for q = 1, 2, …, S:

$$ \begin{aligned} & \sum\limits_{p = 1,p \ne q}^{S} {\sum\limits_{m = 0}^{\infty } {\sum\limits_{n = m}^{\infty } {2n^{\prime}\left[ \begin{gathered} A_{nm}^{(p)} Q_{1} (2n,2m,2n^{\prime},2m^{\prime},p,q) + B_{nm}^{(p)} Q_{3} (2n,2m,2n^{\prime},2m^{\prime},p,q) \hfill \\ + C_{nm}^{(p)} Q_{1} (2n + 1,2m + 1,2n^{\prime},2m^{\prime},p,q) + D_{nm}^{(p)} Q_{3} (2n + 1,2m + 1,2n^{\prime},2m^{\prime},p,q) \hfill \\ \end{gathered} \right]} } } \hfill \\& \quad - (2n^{\prime} + 1)a_{q}^{{ - 4n^{\prime} - 1}} A_{{n^{\prime}m^{\prime}}}^{(q)} + \sum\limits_{{n = m^{\prime}}}^{\infty } {A_{{nm^{\prime}}}^{(q)} (2n^{\prime})K(2n,2m^{\prime},2n^{\prime})} - 2n^{\prime}E_{{n^{\prime}m^{\prime}}}^{(q)} = - 2n^{\prime}f(2n^{\prime},2m^{\prime},q)\cos (2m^{\prime}\alpha ), \hfill \\ &\quad m^{\prime} = 0,1,2,\ldots, n^{\prime} = m^{\prime},m^{\prime} + 1,... \hfill \\ \end{aligned} $$
(B2)
$$ \begin{aligned} & \sum\limits_{p = 1,p \ne q}^{S} {\sum\limits_{m = 0}^{\infty } {\sum\limits_{n = m}^{\infty } {2n^{\prime}\left[ \begin{gathered} A_{nm}^{(p)} Q_{2} (2n,2m,2n^{\prime},2m^{\prime},p,q) + B_{nm}^{(p)} Q_{4} (2n,2m,2n^{\prime},2m^{\prime},p,q) \hfill \\ + C_{nm}^{(p)} Q_{2} (2n + 1,2m + 1,2n^{\prime},2m^{\prime},p,q) + D_{nm}^{(p)} Q_{4} (2n + 1,2m + 1,2n^{\prime},2m^{\prime},p,q) \hfill \\ \end{gathered} \right]} } } \hfill \\ & \quad - (2n^{\prime} + 1)a_{q}^{{ - 4n^{\prime} - 1}} B_{{n^{\prime}m^{\prime}}}^{(q)} + \sum\limits_{{n = m^{\prime}}}^{\infty } {B_{{nm^{\prime}}}^{(q)} (2n^{\prime})K(2n,2m^{\prime},2n^{\prime})} - 2n^{\prime}F_{{n^{\prime}m^{\prime}}}^{(q)} = - 2n^{\prime}f(2n^{\prime},2m^{\prime},q)\sin (2m^{\prime}\alpha ), \hfill \\ \end{aligned} $$
(B3)
$$ \begin{aligned} & \sum\limits_{p = 1,p \ne q}^{S} {\sum\limits_{m = 0}^{\infty } {\sum\limits_{n = m}^{\infty } {\left[ \begin{gathered} A_{nm}^{(p)} Q_{1} (2n,2m,2n^{\prime} + 1,2m^{\prime} + 1,p,q) + B_{nm}^{(p)} Q_{3} (2n,2m,2n^{\prime} + 1,2m^{\prime} + 1,p,q) \hfill \\ + C_{nm}^{(p)} Q_{1} (2n + 1,2m + 1,2n^{\prime} + 1,2m^{\prime} + 1,p,q) + D_{nm}^{(p)} Q_{3} (2n + 1,2m + 1,2n^{\prime} + 1,2m^{\prime} + 1,p,q) \hfill \\ \end{gathered} \right]} } } \hfill \\ & \quad - \frac{{2n^{\prime} + 2}}{{2n^{\prime} + 1}}a_{q}^{{ - 4n^{\prime} - 3}} C_{{n^{\prime}m^{\prime}}}^{(q)} + \sum\limits_{{n = m^{\prime}}}^{\infty } {C_{{nm^{\prime}}}^{(q)} K(2n + 1,2m^{\prime} + 1,2n^{\prime} + 1)} - G_{{n^{\prime}m^{\prime}}}^{(q)} = - f(2n^{\prime} + 1,2m^{\prime} + 1,q)\cos ((2m^{\prime} + 1)\alpha ), \hfill \\ \end{aligned} $$
(B4)
$$ \begin{aligned} & \sum\limits_{p = 1,p \ne q}^{S} {\sum\limits_{m = 0}^{\infty } {\sum\limits_{n = m}^{\infty } {\left[ \begin{gathered} A_{nm}^{(p)} Q_{2} (2n,2m,2n^{\prime} + 1,2m^{\prime} + 1,p,q) + B_{nm}^{(p)} Q_{4} (2n,2m,2n^{\prime} + 1,2m^{\prime} + 1,p,q) \hfill \\ + C_{nm}^{(p)} Q_{2} (2n + 1,2m + 1,2n^{\prime} + 1,2m^{\prime} + 1,p,q) + D_{nm}^{(p)} Q_{4} (2n + 1,2m + 1,2n^{\prime} + 1,2m^{\prime} + 1,p,q) \hfill \\ \end{gathered} \right]} } } \hfill \\ & \quad - \frac{{2n^{\prime} + 2}}{{2n^{\prime} + 1}}a_{q}^{{ - 4n^{\prime} - 3}} D_{{n^{\prime}m^{\prime}}}^{(q)} + \sum\limits_{{n = m^{\prime}}}^{\infty } {D_{{nm^{\prime}}}^{(q)} K(2n + 1,2m^{\prime} + 1,2n^{\prime} + 1)} - H_{{n^{\prime}m^{\prime}}}^{(q)} = - f(2n^{\prime} + 1,2m^{\prime} + 1,q)\sin ((2m^{\prime} + 1)\alpha ), \hfill \\ \end{aligned} $$
(B5)

where the value of Qs (s = 1, 2, 3, 4) is calculated by Eq. (A11).

Substituting velocity potentials into the second equals sign of Eq. (13), and conducting similar algebraic operation as above, we obtain:

$$ \begin{aligned}& \sum\limits_{p = 1,p \ne q}^{S} {\sum\limits_{m = 0}^{\infty } {\sum\limits_{n = m}^{\infty } {\left[ \begin{gathered} A_{nm}^{(p)} Q_{1} (2n,2m,2n^{\prime},2m^{\prime},p,q) + B_{nm}^{(p)} Q_{3} (2n,2m,2n^{\prime},2m^{\prime},p,q) \hfill \\ + C_{nm}^{(p)} Q_{1} (2n + 1,2m + 1,2n^{\prime},2m^{\prime},p,q) + D_{nm}^{(p)} Q_{3} (2n + 1,2m + 1,2n^{\prime},2m^{\prime},p,q) \hfill \\ \end{gathered} \right]} } } \\ & \quad + a_{q}^{{ - 4n^{\prime} - 1}} A_{{n^{\prime}m^{\prime}}}^{(q)} + \sum\limits_{{n = m^{\prime}}}^{\infty } {A_{{nm^{\prime}}}^{(q)} K(2n,2m^{\prime},2n^{\prime})} - \left( {1 - \frac{{2n^{\prime}}}{{{\text{i}} kG_{q} a_{q} }}} \right)E_{{n^{\prime}m^{\prime}}}^{(q)} = - f(2n^{\prime},2m^{\prime},q)\cos (2m^{\prime}\alpha ), \hfill \\ \end{aligned} $$
(B6)
$$ \begin{aligned} & \sum\limits_{p = 1,p \ne q}^{S} {\sum\limits_{m = 0}^{\infty } {\sum\limits_{n = m}^{\infty } {\left[ \begin{gathered} A_{nm}^{(p)} Q_{2} (2n,2m,2n^{\prime},2m^{\prime},p,q) + B_{nm}^{(p)} Q_{4} (2n,2m,2n^{\prime},2m^{\prime},p,q) \hfill \\ + C_{nm}^{(p)} Q_{2} (2n + 1,2m + 1,2n^{\prime},2m^{\prime},p,q) + D_{nm}^{(p)} Q_{4} (2n + 1,2m + 1,2n^{\prime},2m^{\prime},p,q) \hfill \\ \end{gathered} \right]} } } \hfill \\ & \quad + a_{q}^{{ - 4n^{\prime} - 1}} B_{{n^{\prime}m^{\prime}}}^{(q)} + \sum\limits_{{n = m^{\prime}}}^{\infty } {B_{{nm^{\prime}}}^{(q)} K(2n,2m^{\prime},2n^{\prime})} - \left( {1 - \frac{{2n^{\prime}}}{{{\text{i}} kG_{q} a_{q} }}} \right)F_{{n^{\prime}m^{\prime}}}^{(q)} = - f(2n^{\prime},2m^{\prime},q)\sin (2m^{\prime}\alpha ), \hfill \\ \end{aligned} $$
(B7)
$$ \begin{aligned} &\sum\limits_{p = 1,p \ne q}^{S} {\sum\limits_{m = 0}^{\infty } {\sum\limits_{n = m}^{\infty } {\left[ \begin{gathered} A_{nm}^{(p)} Q_{1} (2n,2m,2n^{\prime} + 1,2m^{\prime} + 1,p,q) + B_{nm}^{(p)} Q_{3} (2n,2m,2n^{\prime} + 1,2m^{\prime} + 1,p,q) \hfill \\ + C_{nm}^{(p)} Q_{1} (2n + 1,2m + 1,2n^{\prime} + 1,2m^{\prime} + 1,p,q) + D_{nm}^{(p)} Q_{3} (2n + 1,2m + 1,2n^{\prime} + 1,2m^{\prime} + 1,p,q) \hfill \\ \end{gathered} \right]} } } \hfill \\ &\quad + a_{q}^{{ - 4n^{\prime} - 3}} C_{{n^{\prime}m^{\prime}}}^{(q)} + \sum\limits_{{n = m^{\prime}}}^{\infty } {C_{{nm^{\prime}}}^{(q)} K(2n + 1,2m^{\prime} + 1,2n^{\prime} + 1)} - \left( {1 - \frac{{2n^{\prime} + 1}}{{{\text{i}} kG_{q} a_{q} }}} \right)G_{{n^{\prime}m^{\prime}}}^{(q)} = - f(2n^{\prime} + 1,2m^{\prime} + 1,q)\cos ((2m^{\prime} + 1)\alpha ), \hfill \\ \end{aligned} $$
(B8)
$$ \begin{aligned} & \sum\limits_{p = 1,p \ne q}^{S} {\sum\limits_{m = 0}^{\infty } {\sum\limits_{n = m}^{\infty } {\left[ \begin{gathered} A_{nm}^{(p)} Q_{2} (2n,2m,2n^{\prime} + 1,2m^{\prime} + 1,p,q) + B_{nm}^{(p)} Q_{4} (2n,2m,2n^{\prime} + 1,2m^{\prime} + 1,p,q) \hfill \\ + C_{nm}^{(p)} Q_{2} (2n + 1,2m + 1,2n^{\prime} + 1,2m^{\prime} + 1,p,q) + D_{nm}^{(p)} Q_{4} (2n + 1,2m + 1,2n^{\prime} + 1,2m^{\prime} + 1,p,q) \hfill \\ \end{gathered} \right]} } } \hfill \\& \quad + a_{q}^{{ - 4n^{\prime} - 3}} D_{{n^{\prime}m^{\prime}}}^{(q)} + \sum\limits_{{n = m^{\prime}}}^{\infty } {D_{{nm^{\prime}}}^{(q)} K(2n + 1,2m^{\prime} + 1,2n^{\prime} + 1)} - \left( {1 - \frac{{2n^{\prime} + 1}}{{{\text{i}} kG_{q} a_{q} }}} \right)H_{{n^{\prime}m^{\prime}}}^{(q)} = - f(2n^{\prime} + 1,2m^{\prime} + 1,q)\sin ((2m^{\prime} + 1)\alpha ). \hfill \\ \end{aligned} $$
(B9)

A system of linear equations formulated by Eqs. (B2)–(B9), having the size of [8(M + 1)(N + 1)S] × [8(M + 1)(N + 1)S], is obtained by truncating m and m′ after M terms, and n and n′ after m (m′) + N terms according to the desired accuracy. Solving this linear system gives all the unknown coefficients in the velocity potentials.

Appendix C: Linear system for the special case of impermeable reef balls

Substituting the velocity potentials into Eq. (43) and conducting a similar process as that leading to Eqs. (B2)–(B5), we obtain

$$ \begin{aligned} & \sum\limits_{p = 1,p \ne q}^{S} {\sum\limits_{m = 0}^{\infty } {\sum\limits_{n = m}^{\infty } {2n^{\prime}\left[ \begin{gathered} A_{nm}^{(p)} Q_{1} (2n,2m,2n^{\prime},2m^{\prime},p,q) + B_{nm}^{(p)} Q_{3} (2n,2m,2n^{\prime},2m^{\prime},p,q) \hfill \\ + C_{nm}^{(p)} Q_{1} (2n + 1,2m + 1,2n^{\prime},2m^{\prime},p,q) + D_{nm}^{(p)} Q_{3} (2n + 1,2m + 1,2n^{\prime},2m^{\prime},p,q) \hfill \\ \end{gathered} \right]} } } \hfill \\ & \quad - (2n^{\prime} + 1)a_{q}^{{ - 4n^{\prime} - 1}} A_{{n^{\prime}m^{\prime}}}^{(q)} + \sum\limits_{{n = m^{\prime}}}^{\infty } {A_{{nm^{\prime}}}^{(q)} (2n^{\prime})K(2n,2m^{\prime},2n^{\prime})} = - 2n^{\prime}f(2n^{\prime},2m^{\prime},q)\cos (2m^{\prime}\alpha ), \hfill \\ \end{aligned} $$
(C1)
$$ \begin{aligned} & \sum\limits_{p = 1,p \ne q}^{S} {\sum\limits_{m = 0}^{\infty } {\sum\limits_{n = m}^{\infty } {2n^{\prime}\left[ \begin{gathered} A_{nm}^{(p)} Q_{2} (2n,2m,2n^{\prime},2m^{\prime},p,q) + B_{nm}^{(p)} Q_{4} (2n,2m,2n^{\prime},2m^{\prime},p,q) \hfill \\ + C_{nm}^{(p)} Q_{2} (2n + 1,2m + 1,2n^{\prime},2m^{\prime},p,q) + D_{nm}^{(p)} Q_{4} (2n + 1,2m + 1,2n^{\prime},2m^{\prime},p,q) \hfill \\ \end{gathered} \right]} } } \hfill \\ &\quad - (2n^{\prime} + 1)a_{q}^{{ - 4n^{\prime} - 1}} B_{{n^{\prime}m^{\prime}}}^{(q)} + \sum\limits_{{n = m^{\prime}}}^{\infty } {B_{{nm^{\prime}}}^{(q)} (2n^{\prime})K(2n,2m^{\prime},2n^{\prime})} = - 2n^{\prime}f(2n^{\prime},2m^{\prime},q)\sin (2m^{\prime}\alpha ), \hfill \\ \end{aligned} $$
(C2)
$$ \begin{aligned} & \sum\limits_{p = 1,p \ne q}^{S} {\sum\limits_{m = 0}^{\infty } {\sum\limits_{n = m}^{\infty } {\left[ \begin{gathered} A_{nm}^{(p)} Q_{1} (2n,2m,2n^{\prime} + 1,2m^{\prime} + 1,p,q) + B_{nm}^{(p)} Q_{3} (2n,2m,2n^{\prime} + 1,2m^{\prime} + 1,p,q) \hfill \\ + C_{nm}^{(p)} Q_{1} (2n + 1,2m + 1,2n^{\prime} + 1,2m^{\prime} + 1,p,q) + D_{nm}^{(p)} Q_{3} (2n + 1,2m + 1,2n^{\prime} + 1,2m^{\prime} + 1,p,q) \hfill \\ \end{gathered} \right]} } } \hfill \\ &\quad - \frac{{2n^{\prime} + 2}}{{2n^{\prime} + 1}}a_{q}^{{ - 4n^{\prime} - 3}} C_{{n^{\prime}m^{\prime}}}^{(q)} + \sum\limits_{{n = m^{\prime}}}^{\infty } {C_{{nm^{\prime}}}^{(q)} K(2n + 1,2m^{\prime} + 1,2n^{\prime} + 1)} = - f(2n^{\prime} + 1,2m^{\prime} + 1,q)\cos ((2m^{\prime} + 1)\alpha ), \hfill \\ \end{aligned} $$
(C3)
$$ \begin{aligned}& \sum\limits_{p = 1,p \ne q}^{S} {\sum\limits_{m = 0}^{\infty } {\sum\limits_{n = m}^{\infty } {\left[ \begin{gathered} A_{nm}^{(p)} Q_{2} (2n,2m,2n^{\prime} + 1,2m^{\prime} + 1,p,q) + B_{nm}^{(p)} Q_{4} (2n,2m,2n^{\prime} + 1,2m^{\prime} + 1,p,q) \hfill \\ + C_{nm}^{(p)} Q_{2} (2n + 1,2m + 1,2n^{\prime} + 1,2m^{\prime} + 1,p,q) + D_{nm}^{(p)} Q_{4} (2n + 1,2m + 1,2n^{\prime} + 1,2m^{\prime} + 1,p,q) \hfill \\ \end{gathered} \right]} } } \hfill \\ &\quad - \frac{{2n^{\prime} + 2}}{{2n^{\prime} + 1}}a_{q}^{{ - 4n^{\prime} - 3}} D_{{n^{\prime}m^{\prime}}}^{(q)} + \sum\limits_{{n = m^{\prime}}}^{\infty } {D_{{nm^{\prime}}}^{(q)} K(2n + 1,2m^{\prime} + 1,2n^{\prime} + 1)} = - f(2n^{\prime} + 1,2m^{\prime} + 1,q)\sin ((2m^{\prime} + 1)\alpha ). \hfill \\ \end{aligned} $$
(C4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Aj., Sun, Xl., Liu, Y. et al. Analysis of water wave interaction with multiple submerged porous reef balls. J Eng Math 127, 26 (2021). https://doi.org/10.1007/s10665-021-10095-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-021-10095-6

Keywords

Navigation