Skip to main content

Advertisement

Log in

A comparative 3-D transient electromagnetic, thermal and powertrain study of single rotor BLPMSM and dual rotor machine for electric propelled vehicle

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This article addresses the benefits of novel dual rotor machine for automobile sector. In case of traditional electric vehicle technology, the vehicle has a single rotor electric machine that can able to perform motoring or regenerative operation and can be possible according to the energy available in the battery. To overcome the above-mentioned problem, novel electric machine design topology with dual operation of motor and generator at same instances of time is proposed with improved electromagnetic, thermal and mechanical transmission losses. The design can be possible by adopting 7.2 kW claw pole alternator and 15 kW brushless permanent magnet synchronous machine as a dual rotor machine considering in-wheel concept. The performance analysis of the machine is done by using finite element analysis technique. The electromagnetic compatibility of machine is performed by three-dimensional transient solver in MagNet software. The electromagnetic analysis of machine is improved by introducing notches in the stator and permanent magnets in the rotor. Based on the electromagnetic results, thermal analysis of machine is calculated by coupling transient analysis using ThermNet software. The simulation results of machine are validated by using electric vehicle Powertrain blocks. The real-time performance of the machine is tested with real-world drive cycle using simulation software. The result substantiates the novelty of this design for improving the driving range of the vehicle for electric vehicle applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig.17
Fig.18
Fig.19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

References

  1. Khaligh A, Li Z (2010) Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art. IEEE Trans Veh Technol 59(6):2806–2814. https://doi.org/10.1109/TVT.2010.2047877

    Article  Google Scholar 

  2. Chan CC (2007) The state of the art of electric, hybrid, and fuel cell vehicles. Proc IEEE 95(4):704–718. https://doi.org/10.1109/JPROC.2007.892489

    Article  Google Scholar 

  3. Sieklucki G (2018) An investigation into the induction motor of tesla model S vehicle. 2018 International symposium on electrical machines (SME), Andrychów, pp. 1-6. https://doi.org/10.1109/ISEM.2018.8442648

  4. Jeong J., Lee W., Kim N., Stutenberg K. et al., Control Analysis and Model Validation for BMW i3 Range Extender. SAE Technical Paper 2017–01–1152, 2017,https://doi.org/10.4271/2017-01-1152.

  5. Sato Y., Ishikawa S., Okubo T., Abe M. et al., Development of High Response Motor and Inverter System for the Nissan LEAF Electric Vehicle. SAE Technical Paper 2011–01–0350, 2011, https://doi.org/10.4271/2011-01-0350.

  6. Pellegrino G, Vagati A, Boazzo B, Guglielmi P (2012) Comparison of induction and PM synchronous motor drives for EV application including design examples. In: IEEE Transactions on industry applications 48 (6), pp. 2322–2332, https://doi.org/10.1109/TIA.2012.2227092. t. marci

  7. Marcic T, Stumberger B, Stumberger G, Hadziselimovic M, Virtic P, Dolinar D (2008) Line-starting three- and single-phase interior permanent magnet synchronous motors—direct comparison to induction motors. IEEE Trans Magn 44(11):4413–4416. https://doi.org/10.1109/TMAG.2008.2001537

    Article  Google Scholar 

  8. de Santiago J et al (2012) Electrical motor drivelines in commercial all-electric vehicles: a review. IEEE Trans Veh Technol 61(2):475–484. https://doi.org/10.1109/TVT.2011.2177873

    Article  Google Scholar 

  9. Wu D, Zhu ZQ, (2015) Design tradeoff between cogging torque and torque ripple in fractional slot surface-mounted permanent magnet machines. In: IEEE Transactions on magnetics 51(11), pp. 1–4, Art no. 8108704. https://doi.org/10.1109/TMAG.2015.2436714.

  10. Yazdan T, Zhao W, Lipo TA, Kwon B. (2016) A novel technique for two-phase BLDC motor to avoid demagnetization. In: IEEE Transactions on Magnetics 52(7), pp. 1–4, Art no. 8106704. https://doi.org/10.1109/TMAG.2016.2521874.

  11. Zhu ZQ, Ruangsinchaiwanich S, Ishak D, Howe D (2005) Analysis of cogging torque in brushless machines having nonuniformly distributed stator slots and stepped rotor magnets. IEEE Trans Magn 41(10):3910–3912. https://doi.org/10.1109/TMAG.2005.854968

    Article  Google Scholar 

  12. Liu T, Huang S, Gao J, Lu K (2013) Cogging torque reduction by slot-opening shift for permanent magnet machines. IEEE Trans Magn 49(7):4028–4031. https://doi.org/10.1109/TMAG.2013.2239977

    Article  Google Scholar 

  13. Ghorbanian V, Hussain S, Hamidizadeh S, Chromik R, Lowther D, (2018) The role of temperature-dependent material properties in optimizing the design of permanent magnet motors. In: IEEE Transactions on magnetics 54(3), pp. 1–4, Art no. 8101104. https://doi.org/10.1109/TMAG.2017.2760800.

  14. Liu H, Chow L, Wu T, (2015) Design of a permanent magnet motor with wide temperature range," IECON 2015 - 41st Annual Conference of the IEEE industrial electronics society, Yokohama, pp. 003816–003820. https://doi.org/10.1109/IECON.2015.7392695.

  15. Wu LJ, Zhu ZQ, Staton DA, Popescu M, Hawkins D (2012) Comparison of analytical models of cogging torque in surface-mounted PM machines. IEEE Trans Industr Electron 59(6):2414–2425. https://doi.org/10.1109/TIE.2011.2143379

    Article  Google Scholar 

  16. Chau KT, Zhang D, Jiang JZ, Liu C, Zhang Y (2007) Design of a magnetic-geared outer-rotor permanent-magnet brushless motor for electric vehicles. IEEE Trans Magn 43(6):2504–2506. https://doi.org/10.1109/TMAG.2007.893714

    Article  Google Scholar 

  17. Kim H, Kim K, Jo Y, Hur J (2013) Optimization methods of torque density for developing the neodymium free SPOKE-type BLDC motor. IEEE Trans Magn 49(5):2173–2176. https://doi.org/10.1109/TMAG.2013.2237890

    Article  Google Scholar 

  18. Chen Z, Li G (2019) A V Type permanent magnet motor simulation analysis and prototype test for electric vehicle. IEEE Access 7:174839–174846. https://doi.org/10.1109/ACCESS.2019.2957420

    Article  Google Scholar 

  19. Sun C, Bai L, Du X, Zhou Y, (2014) A novel wheel hub motor based on U-shaped electromagnet working principle and torque characteristics. In: 2014 9th IEEE Conference on industrial electronics and applications, Hangzhou, pp. 1398–1403. https://doi.org/10.1109/ICIEA.2014.6931387.

  20. Gan J, Chau KT, Chan CC, Jiang JZ, (2000) A new surface-inset, permanent-magnet, brushless DC motor drive for electric vehicles, In: IEEE Transactions on magnetics 36(5), pp. 3810–3818. https://doi.org/10.1109/20.908381.

  21. Diao K, Sun X, Lei G, Bramerdorfer G, Guo Y, Zhu J, System-level robust design optimization of a switched reluctance motor drive system considering multiple driving cycles. In: IEEE Transactions on energy conversion. https://doi.org/10.1109/TEC.2020.3009408.

  22. Shi Z, Sun X, Cai Y, Yang Z (2020) Robust design optimization of a five-phase PM Hub motor for fault-tolerant operation based on Taguchi method. IEEE Trans Energy Convers 35(4):2036–2044. https://doi.org/10.1109/TEC.2020.2989438

    Article  Google Scholar 

  23. Sun X, Shi Z, Lei G, Guo Y, Zhu J (2021) Multi-objective design optimization of an IPMSM based on multilevel strategy. IEEE Trans Industr Electron 68(1):139–148. https://doi.org/10.1109/TIE.2020.2965463

    Article  Google Scholar 

  24. Chakkarapani K, Thangavelu T, Dharmalingam K (2020) Thermal analysis of brushless DC motor using multiobjective optimization. Int Trans Electr Energ Syst 30:e12546. https://doi.org/10.1002/2050-7038.12546

    Article  Google Scholar 

  25. Chakkarapani K, Thangavelu T, Dharmalingam K, Thandavarayan P (2019) Multiobjective design optimization and analysis of magnetic flux distribution for slotless permanent magnet brushless DC motor using evolutionary algorithms. J Magn Magn Mater 476:524–537

    Article  Google Scholar 

  26. Gao DW, Mi C, Emadi A (2007) Modeling and simulation of electric and hybrid vehicles. Proc IEEE 95(4):729–745. https://doi.org/10.1109/JPROC.2006.890127

    Article  Google Scholar 

  27. Crescimbini F, Di Napoli A, Solero L, Caricchi F. (2005) Compact permanent-magnet generator for hybrid vehicle applications. In: IEEE Transactions on industry applications 41(5), pp. 1168–1177, https://doi.org/10.1109/TIA.2005.855048.

  28. Arumugam D, Logamani P, Santha KR (2017) Improved performance of integrated generator systems with claw pole alternator for aircraft applications. Energy 133(8):808–821. https://doi.org/10.1016/j.energy.2017.05.132

    Article  Google Scholar 

  29. Caron G, Henneron T, Piriou F, Faverolle P, Mipo J. (2020) 3-D Numerical modeling of claw-pole alternators with its electrical environment. In: IEEE Transactions on magnetics 56(2), pp. 1–4, Art no. 7509904. https://doi.org/10.1109/TMAG.2019.2949458.

  30. Liu C, Zhu J, Wang Y, Guo Y, Lei G. (2015) Comparison of claw-pole machines with different rotor structures. In: IEEE Transactions on magnetics 51(11), pp. 1–4, Art no. 8110904. https://doi.org/10.1109/TMAG.2015.2443022.

  31. Ma B, Lei G, Zhu J, Guo Y. (2018) Design optimization of a permanent magnet claw pole motor with soft magnetic composite cores. In: IEEE Transactions on magnetics 54(3), pp. 1–4, Art no. 8102204. https://doi.org/10.1109/TMAG.2017.2766689.

  32. Upadhayay P, Kedous-Lebouc A, Garbuio L, Mipo J, Dubus J. (2017) Design & comparison of a conventional and permanent magnet based claw-pole machine for automotive application. In: 2017 15th International conference on electrical machines, drives and power systems (ELMA), Sofia, pp. 1–5. https://doi.org/10.1109/ELMA.2017.7955390.

  33. Li Y, Bobba D, Sarlioglu B (2018) Design and optimization of a novel dual-rotor hybrid PM machine for traction application. IEEE Trans Industr Electron 65(2):1762–1771. https://doi.org/10.1109/TIE.2017.2739686

    Article  Google Scholar 

  34. Dalal A, Kumar P (2018) Design, prototyping, and testing of a dual-rotor motor for electric vehicle application. IEEE Trans Industr Electron 65(9):7185–7192. https://doi.org/10.1109/TIE.2018.2795586

    Article  Google Scholar 

  35. Hamadou GB, Masmoudi A, Abdennadher I, Masmoudi A (2009) Design of a single-stator dual-rotor permanent-magnet machine. IEEE Trans Magn 45(1):127–132. https://doi.org/10.1109/TMAG.2008.2006677

    Article  Google Scholar 

  36. Kwon J, Kwon B (2018) High-efficiency dual output stator-PM machine for the two-mode operation of washing machines. IEEE Trans Energy Convers 33(4):2050–2059. https://doi.org/10.1109/TEC.2018.2866915

    Article  Google Scholar 

  37. Liu H, Zhang Y, Zhang F, Jin S, Zhang H, Nian H (2019) Design and performance analysis of dual-stator brushless doubly-fed machine with cage-barrier rotor. IEEE Trans Energy Convers 34(3):1347–1357. https://doi.org/10.1109/TEC.2018.2890434

    Article  Google Scholar 

  38. Zhang Y, Yu S, Liu G, Zhang H. (2020) Comparative research for a novel dual-stator synchronous machine with permanent magnet-reluctance composite rotor. In: IEEE Transactions on applied superconductivity 30(4), pp. 1–5, Art no. 5203505. https://doi.org/10.1109/TASC.2020.2977592.

  39. Du G, Cao W, Hu S, Lin Z, Yuan T (2019) Design and assessment of an electric vehicle powertrain model based on real-world driving and charging cycles. IEEE Trans Veh Technol 68(2):1178–1187. https://doi.org/10.1109/TVT.2018.2884812

    Article  Google Scholar 

  40. Ronald Jurgen. (2011) Weight and dimensional parameters of a power drive for electrical vehicle (2009–01–1886). In: Electric and hybrid-electric vehicles: engines and powertrains, SAE, pp.45–48.

  41. Wei G, Xiangyang X, Yongxin C, Yang Y. (2011) Simulation of powertrain and dynamics of automobile based on SimulationX. In: 2011 6th IEEE Conference on industrial electronics and applications, Beijing, pp. 2326–2330. https://doi.org/10.1109/ICIEA.2011.5975981.

  42. Chen Q, Liu G, Gong W, Zhao W (2011) A new fault-tolerant permanent-magnet machine for electric vehicle applications. IEEE Trans Magn 47(10):4183–4186. https://doi.org/10.1109/TMAG.2011.2146238

    Article  Google Scholar 

  43. Tiegna H, Amara Y, Barakat G. (2014) Study of cogging torque in axial flux permanent magnet machines using an analytical model. In: IEEE Transactions on magnetics 50(2), pp. 845–848, Art no. 7020904. https://doi.org/10.1109/TMAG.2013.2279075.

  44. Hanselman DC (2006) Brushless permanent magnet motor design, 2nd edn. Magna Physics Publishing, Madison

    Google Scholar 

  45. Rivière N, Stokmaier M, Goss J. (2020) An innovative multi-objective optimization approach for the multiphysics design of electrical machines. In: 2020 IEEE Transportation electrification conference & expo (ITEC), Chicago, pp. 691-696. https://doi.org/10.1109/ITEC48692.2020.9161650

  46. Sawhney AK (2006) Course in electrical machine design, 5th edn. Dhanpatrai & sons publications, Delhi

    Google Scholar 

  47. Thangaraj B, Subramanian R (2019) Performance and simulation analysis of micro drive cycle for electric vehicle. J Electr Syst Paris 15(2):331–345

    Google Scholar 

Download references

Acknowledgment

The authors would like to sincerely thank the Chancellor, Vice Chancellor, Deans and various department Heads of Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Chennai for their continuous encouragement and support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharathi Thangaraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thangaraj, B., Subramanian, R. A comparative 3-D transient electromagnetic, thermal and powertrain study of single rotor BLPMSM and dual rotor machine for electric propelled vehicle. Electr Eng 103, 2705–2731 (2021). https://doi.org/10.1007/s00202-021-01257-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01257-x

Keywords

Navigation