Skip to main content
Log in

Gradient and Eigenvalue Estimates on the Canonical Bundle of Kähler Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We prove certain gradient and eigenvalue estimates, as well as the heat kernel estimates, for the Hodge Laplacian on (m, 0) forms, i.e., sections of the canonical bundle of Kähler manifolds, where m is the complex dimension of the manifold. Instead of the usual dependence on curvature tensor, our condition depends only on the Ricci curvature bound. The proof is based on a new Bochner type formula for the gradient of (m, 0) forms, which involves only the Ricci curvature and the gradient of the scalar curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bochner, S.: Vector fields and Ricci curvature. Bull. Am. Math. Soc. 52, 776–797 (1946)

    Article  MathSciNet  Google Scholar 

  2. Croke, C.: Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. École Norm. Sup. 13(4), 419–435 (1980)

    Article  MathSciNet  Google Scholar 

  3. Charalambous, N., Lu, Z.: The spectrum of continuously perturbed operators and the Laplacian on forms. Differ. Geom. Appl. 65, 227–240 (2019)

    Article  MathSciNet  Google Scholar 

  4. Chanillo, S., Treves, F.: On the lowest eigenvalue of the Hodge Laplacian. J. Differ. Geom. 45(2), 273–287 (1997)

    Article  MathSciNet  Google Scholar 

  5. Dodziuk, J.: Eigenvalues of the Laplacian on Forms. Proc. Am. Math. Soc. 85(3), 437–443 (1982)

    Article  MathSciNet  Google Scholar 

  6. Kobayashi, S.: On compact Kähler manifolds with positive definite Ricci tensor. Ann. Math. 74, 570–574 (1961)

    Article  MathSciNet  Google Scholar 

  7. Kobayashi, S., Wu, H.-H.: On holomorphic sections of certain Hermitian vector bundles. Math. Ann. 189, 1–4 (1970)

    Article  MathSciNet  Google Scholar 

  8. Mantuano, T.: Discretization of Riemannian manifolds applied to the Hodge Laplacian. Am. J. Math. 130(6), 1477–508 (2008)

    Article  MathSciNet  Google Scholar 

  9. Li, P.: On the Sobolev constant and the p-spectrum of a compact Riemannian manifold. Ann. Sci. École Norm. Sup. 13(4), 451–468 (1980)

    Article  MathSciNet  Google Scholar 

  10. Li, P.: Geometric Analysis. Cambridge Studies in Advanced Mathematics, vol. 134. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  11. Lott, J.: Collapsing and the differential form Laplacian: the case of a smooth limit space. Duke Math. J. 114(2), 267–306 (2002)

    Article  MathSciNet  Google Scholar 

  12. Li, P., Schoen, R.: \(L^p\) and mean value properties of subharmonic functions on Riemannian manifolds. Acta Math. 153(3–4), 279–301 (1984)

    Article  MathSciNet  Google Scholar 

  13. Li, P., Yau, S.-T.: Eigenvalues of a compact Riemannian manifold. AMS Proc. Symp. Pure Math. 36, 205–239 (1980)

    Article  MathSciNet  Google Scholar 

  14. Li, P., Yau, S.-T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  15. Ma, X., Marinescu, G., Zelditch, S.: Scaling asymptotics of heat kernels of line bundles. In: Analysis Complex Geometry, and Mathematical Physics: In Honor of Duong H. Phong. Contemporary Mathematics, vol. 644, pp. 175–202. American Mathematical Society, Providence, RI (2015)

    Chapter  Google Scholar 

  16. Morrow, J., Kodaira, K.: Complex Manifolds. Holt, Rinchart and Winston Inc., New York (1971)

    MATH  Google Scholar 

  17. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. International Mathematics Research Notices 1992(2), 27–38 (1992)

    Article  Google Scholar 

  18. Wang, J.P., Zhou, L.F.: Gradient estimate for eigenforms of Hodge Laplacian. Math. Res. Lett. 19(3), 575–588 (2012)

    Article  MathSciNet  Google Scholar 

  19. Tian, G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101, 101–172 (1990)

    Article  MathSciNet  Google Scholar 

  20. Yang, H.-C.: Estimates of the first eigenvalue for a compact Riemann manifold. Sci. China Ser. A 33(1), 39–51 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Yau, S.-T.: Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold. Ann. Sci. École Norm. Sup. 8(4), 487–507 (1975)

    Article  MathSciNet  Google Scholar 

  22. Zhong, J.-Q., Yang, H.-C.: On the estimate of the first eigenvalue of a compact Riemannian manifold. Sci. Sin. Ser. A 27(12), 1265–1273 (1984)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank Professor Jiaping Wang for very helpful suggestions on Lemma 2.4. Z. L. is supported by NSF Grant DMS-19-08513. Q. Z. is supported by the Simons Foundation Grant 710364. M. Z. is supported by Shanghai Science and Technology Innovation Program Basic Research Project of STCSM20JC1412900, Science and Technology Commission of Shanghai Municipality (STCSM) No. 18dz2271000, and NSFC No.11971168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqin Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Zhang, Q.S. & Zhu, M. Gradient and Eigenvalue Estimates on the Canonical Bundle of Kähler Manifolds. J Geom Anal 31, 10304–10335 (2021). https://doi.org/10.1007/s12220-021-00647-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00647-8

Keywords

Navigation