Skip to main content
Log in

Overcharging a Reissner-Nordström Taub-NUT regular black hole

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The destruction of a regular black hole event horizon might provide us the possibility to access regions inside black hole event horizon. This paper investigates the possibility of overcharging a charged Taub-NUT regular black hole via the scattering of a charged field and the absorption of a charged particle. For the charged scalar field scattering, both the near-extremal and extremal charged Taub-NUT regular black holes cannot be overcharged. For the test charged particle absorption, the result shows that the event horizon of the extremal charged Taub-NUT regular black hole still exists while the event horizon of the near-extremal one can be destroyed. However, if the charge and energy cross the event horizon in a continuous path, the near-extremal charged Taub-NUT regular black hole might not be overcharged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Abbott, et al. (LIGO Scientific and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016), arXiv: 1602.03837.

    Article  ADS  MathSciNet  Google Scholar 

  2. B. P. Abbott, et al. (LIGO Scientific and Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017), arXiv: 1710.05832.

    Article  ADS  Google Scholar 

  3. B. P. Abbott, et al. (LIGO Scientific and Virgo Collaboration), Phys. Rev. Lett. 125, 101102 (2020), arXiv: 2009.01075.

    Article  ADS  Google Scholar 

  4. X. Zhang, Sci. China-Phys. Mech. Astron. 62, 110431 (2019).

    Article  ADS  Google Scholar 

  5. J. Li, Z. C. Che, and Q. G. Huang, Sci. China-Phys. Mech. Astron. 62, 110421 (2019).

    Article  ADS  Google Scholar 

  6. V. Cardoso, E. Franzin, A. Maselli, P. Pani, and G. Raposo, Phys. Rev. D 95, 084014 (2017), arXiv: 1701.01116.

    Article  ADS  Google Scholar 

  7. E. Belgacem, Y. Dirian, S. Foffa, and M. Maggiore, Phys. Rev. D 98, 023510 (2018), arXiv: 1805.08731.

    Article  ADS  Google Scholar 

  8. X. L. Fan, J. Li, X. Li, Y. H. Zhong, and J. W. Cao, Sci. China-Phys. Mech. Astron. 62, 969512 (2019), arXiv: 1811.01380.

    Article  ADS  Google Scholar 

  9. J. García-Bellido, M. Peloso, and C. Unal, J. Cosmol. Astropart. Phys. 2016(12), 031 (2016), arXiv: 1610.03763.

    Article  Google Scholar 

  10. R. Niu, and W. Zhao, Sci. China-Phys. Mech. Astron. 62, 970411 (2019), arXiv: 1812.00208.

    Article  ADS  Google Scholar 

  11. L. Heisenberg, Phys. Rep. 796, 1 (2019), arXiv: 1807.01725.

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Ishak, Living Rev. Relativ. 22, 1 (2019).

    Article  ADS  Google Scholar 

  13. W. M. Farr, S. Stevenson, M. C. Miller, I. Mandel, B. Farr, and A. Vecchio, Nature 548, 426 (2017), arXiv: 1706.01385.

    Article  ADS  Google Scholar 

  14. X. K. He, J. L. Jing, and Z. J. Cao, Sci. China-Phys. Mech. Astron. 62, 110422 (2019).

    Article  ADS  Google Scholar 

  15. M. Isi, M. Giesler, W. M. Farr, M. A. Scheel, and S. A. Teukolsky, Phys. Rev. Lett. 123, 111102 (2019), arXiv: 1905.00869.

    Article  ADS  Google Scholar 

  16. H. S. Liu, Z. F. Mai, Y. Z. Li, and H. Lü, Sci. China-Phys. Mech. Astron. 63, 240411 (2020), arXiv: 1907.10876.

    Article  ADS  Google Scholar 

  17. R. A. Hennigar, D. Kubizňák, and R. B. Mann, Phys. Rev. D 100, 064055 (2019), arXiv: 1903.08668.

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Q. Wu, and D. Wu, Phys. Rev. D 100, 101501(R) (2019), arXiv: 1909.07776.

    Article  ADS  Google Scholar 

  19. Y. G. Miao, and Z. M. Xu, Sci. China-Phys. Mech. Astron. 62, 010412 (2019), arXiv: 1804.01743.

    Article  Google Scholar 

  20. A. B. Bordo, F. Gray, and D. Kubizňák, J. High Energ. Phys. 2019(7), 119 (2019).

    Article  Google Scholar 

  21. Z. Chen, and J. Jiang, Phys. Rev. D 100, 104016 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  22. Y. Wang, C. H. Wu, and R. H. Yue, Sci. China-Phys. Mech. Astron. 62, 110411 (2019).

    Article  ADS  Google Scholar 

  23. R. Penrose, Riv. Nuovo Cim. 1, 252 (1969); Gen. Rel. Grav. 34, 1141 (2002).

    ADS  Google Scholar 

  24. W. E. East, Phys. Rev. Lett. 122, 231103 (2019), arXiv: 1901.04498.

    Article  ADS  Google Scholar 

  25. P. Figueras, M. Kunesch, and S. Tunyasuvunakool, Phys. Rev. Lett. 116, 071102 (2016), arXiv: 1512.04532.

    Article  ADS  Google Scholar 

  26. P. Figueras, M. Kunesch, L. Lehner, and S. Tunyasuvunakool, Phys. Rev. Lett. 118, 151103 (2017), arXiv: 1702.01755.

    Article  ADS  Google Scholar 

  27. T. Crisford, and J. E. Santos, Phys. Rev. Lett. 118, 181101 (2017), arXiv: 1702.05490.

    Article  ADS  Google Scholar 

  28. T. T. Hu, Y. Song, S. Sun, H. B. Li, and Y. Q. Wang, Eur. Phys. J. C 80, 147 (2020), arXiv: 1906.00235.

    Article  ADS  Google Scholar 

  29. Y. Song, T. T. Hu, and Y. Q. Wang, arXiv: 2008.02513.

  30. R. M. Wald, Ann. Phys. 83, 548 (1974).

    Article  ADS  Google Scholar 

  31. J. V. Rocha, and V. Cardoso, Phys. Rev. D 83, 104037 (2011), arXiv: 1102.4352.

    Article  ADS  Google Scholar 

  32. M. Bouhmadi-Loópez, V. Cardoso, A. Nerozzi, and J. V. Rocha, Phys. Rev. D 81, 084051 (2010), arXiv: 1003.4295.

    Article  ADS  Google Scholar 

  33. S. Shaymatov, N. Dadhich, and B. Ahmedov, Eur. Phys. J. C 79, 585 (2019), arXiv: 1809.10457.

    Article  ADS  Google Scholar 

  34. V. E. Hubeny, Phys. Rev. D 59, 064013 (1999), arXiv: gr-qc/9808043.

    Article  ADS  MathSciNet  Google Scholar 

  35. T. Jacobson, and T. P. Sotiriou, Phys. Rev. Lett. 103, 141101 (2009), arXiv: 0907.4146; Erratum: [Phys. Rev. Lett. 103, 209903 (2009)].

    Article  ADS  MathSciNet  Google Scholar 

  36. Z. Li, and C. Bambi, Phys. Rev. D 87, 124022 (2013), arXiv: 1304.6592.

    Article  ADS  Google Scholar 

  37. J. Sorce, and R. M. Wald, Phys. Rev. D 96, 104014 (2017), arXiv: 1707.05862.

    Article  ADS  MathSciNet  Google Scholar 

  38. J. Jiang, and Y. Gao, Phys. Rev. D 101, 084005 (2020), arXiv: 2003.07501.

    Article  ADS  MathSciNet  Google Scholar 

  39. F. Qu, S. J. Yang, Z. Wang, and J. R. Ren, arXiv: 2008.09950.

  40. M. Zhang, and J. Jiang, Eur. Phys. J. C 80, 890 (2020).

    Article  ADS  Google Scholar 

  41. J. Jiang, Phys. Lett. B 804, 135365 (2020), arXiv: 1912.10826.

    Article  MathSciNet  Google Scholar 

  42. J. Jiang, and M. Zhang, Eur. Phys. J. C 80, 822 (2020), arXiv: 2008.12415.

    Article  ADS  Google Scholar 

  43. İ. Semiz, Gen. Relativ. Gravit. 43, 833 (2011), arXiv: gr-qc/0508011.

    Article  ADS  MathSciNet  Google Scholar 

  44. K. Düztaş, and İ. Semiz, Phys. Rev. D 88, 064043 (2013), arXiv: 1307.1481.

    Article  ADS  Google Scholar 

  45. İ Semiz, and K. Düztaş, Phys. Rev. D 92, 104021 (2015), arXiv: 1507.03744.

    Article  ADS  MathSciNet  Google Scholar 

  46. K. Düztasş, Class. Quantum Grav. 32, 075003 (2015), arXiv: 1408.1735.

    Article  ADS  Google Scholar 

  47. B. Gwak, J. High Energ. Phys. 2018(9), 81 (2018).

    Article  MathSciNet  Google Scholar 

  48. B. Gwak, J. Cosmol. Astropart. Phys. 2019(08), 016 (2019), arXiv: 1901.05589.

    Article  ADS  MathSciNet  Google Scholar 

  49. B. Gwak, J. Cosmol. Astropart. Phys. 2020(03), 058 (2020), arXiv: 1910.13329.

    Article  MathSciNet  Google Scholar 

  50. D. Chen, Chin. Phys. C 44, 015101 (2020).

    Article  ADS  Google Scholar 

  51. S. J. Yang, J. Chen, J. J. Wan, S. W. Wei, and Y. X. Liu, Phys. Rev. D 101, 064048 (2020), arXiv: 2001.03106.

    Article  ADS  MathSciNet  Google Scholar 

  52. S. J. Yang, J. J. Wan, J. Chen, J. Yang, and Y. Q. Wang, Eur. Phys. J. C 80, 937 (2020), arXiv: 2004.07934.

    Article  ADS  Google Scholar 

  53. B. Liang, S. W. Wei, and Y. X. Liu, Mod. Phys. Lett. A 34, 1950037 (2019), arXiv: 1804.06966.

    Article  ADS  Google Scholar 

  54. B. Gwak, Phys. Rev. D 95, 124050 (2017), arXiv: 1611.09640.

    Article  ADS  MathSciNet  Google Scholar 

  55. G. E. A. Matsas, and A. R. R. da Silva, Phys. Rev. Lett. 99, 181301 (2007), arXiv: 0706.3198.

    Article  ADS  Google Scholar 

  56. S. Hod, Phys. Rev. Lett. 100, 121101 (2008), arXiv: 0805.3873.

    Article  ADS  MathSciNet  Google Scholar 

  57. M. Richartz, and A. Saa, Phys. Rev. D 78, 081503 (2008), arXiv: 0804.3921.

    Article  ADS  MathSciNet  Google Scholar 

  58. G. E. A. Matsas, M. Richartz, A. Saa, A. R. R. da Silva, and D. A. T. Vanzella, Phys. Rev. D 79, 101502 (2009), arXiv: 0905.1077.

    Article  ADS  MathSciNet  Google Scholar 

  59. M. Richartz, and A. Saa, Phys. Rev. D 84, 104021 (2011), arXiv: 1109.3364.

    Article  ADS  Google Scholar 

  60. S. W. Wei, Y. X. Liu, C. E. Fu, and K. Yang, J. Cosmol. Astropart. Phys. 2012(10), 053 (2012), arXiv: 1104.0776.

    Article  Google Scholar 

  61. C. Liu, S. Chen, C. Ding, and J. Jing, Phys. Lett. B 701, 285 (2011), arXiv: 1012.5126.

    Article  ADS  MathSciNet  Google Scholar 

  62. J. Jiang, B. Deng, and X. W. Li, Phys. Rev. D 100, 066007 (2019), arXiv: 1908.06565.

    Article  ADS  MathSciNet  Google Scholar 

  63. G. Kalamakis, R. G. Leigh, and A. C. Petkou, arXiv: 2009.08022 hep-th.

  64. A. H. Taub, Ann. Math. 53, 472 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  65. E. Newman, L. Tamburino, and T. Unti, J. Math. Phys. 4, 915 (1963).

    Article  ADS  Google Scholar 

  66. C. W. Misner, J. Math. Phys. 4, 924 (1963).

    Article  ADS  Google Scholar 

  67. S. W. Hawking, and G. F. R. Ellis, The Large Scale Structure of Space-Time, Vol. 1 (Cambridge University Press, Cambridge, 1973).

    Book  MATH  Google Scholar 

  68. P. Hajicek, Commun. Math. Phys. 21, 75 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  69. V. S. Manko, and E. Ruiz, Class. Quantum Grav. 22, 3555 (2005), arXiv: gr-qc/0505001.

    Article  ADS  Google Scholar 

  70. G. Clément, D. Gal’tsov, and M. Guenouche, Phys. Rev. D 93, 024048 (2016), arXiv: 1509.07854.

    Article  ADS  MathSciNet  Google Scholar 

  71. G. Clément, D. Gal’tsov, and M. Guenouche, Phys. Lett. B 750, 591 (2015), arXiv: 1508.07622.

    Article  ADS  MathSciNet  Google Scholar 

  72. G. Clément, and M. Guenouche, Gen. Relativ. Gravit. 50, 60 (2018).

    Article  ADS  Google Scholar 

  73. S. W. Hawking, and C. J. Hunter, Phys. Rev. D 59, 044025 (1999), arXiv: hep-th/9808085.

    Article  ADS  MathSciNet  Google Scholar 

  74. S. W. Hawking, C. J. Hunter, and D. N. Page, Phys. Rev. D 59, 044033 (1999), arXiv: hep-th/9809035.

    Article  ADS  MathSciNet  Google Scholar 

  75. A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, Phys. Rev. D 59, 064010 (1999), arXiv: hep-th/9808177.

    Article  ADS  MathSciNet  Google Scholar 

  76. R. Emparan, C. V. Johnson, and R. C. Myers, Phys. Rev. D 60, 104001 (1999), arXiv: hep-th/9903238.

    Article  ADS  MathSciNet  Google Scholar 

  77. R. B. Mann, Phys. Rev. D 60, 104047 (1999), arXiv: hep-th/9903229.

    Article  ADS  MathSciNet  Google Scholar 

  78. R. B. Mann, Phys. Rev. D 61, 084013 (2000), arXiv: hep-th/9904148.

    Article  ADS  MathSciNet  Google Scholar 

  79. C. V. Johnson, Class. Quantum Grav. 31, 235003 (2014), arXiv: 1405.5941.

    Article  ADS  Google Scholar 

  80. C. V. Johnson, Class. Quantum Grav. 31, 225005 (2014), arXiv: 1406.4533.

    Article  ADS  Google Scholar 

  81. D. Garfinkle, and R. Mann, Class. Quantum Grav. 17, 3317 (2000), arXiv: gr-qc/0004056.

    Article  ADS  Google Scholar 

  82. A. B. Bordo, F. Gray, R. A. Hennigar, and D. Kubizňák, Class. Quantum Grav. 36, 194001 (2019), arXiv: 1905.03785.

    Article  ADS  Google Scholar 

  83. R. Carballo-Rubio, F. Di Filippo, S. Liberati, and M. Visser, Phys. Rev. D 101, 084047 (2020), arXiv: 1911.11200.

    Article  ADS  MathSciNet  Google Scholar 

  84. M. Appels, R. Gregory, and D. Kubizňák, J. High Energ. Phys. 2017(5), 116 (2017).

    Article  Google Scholar 

  85. M. Rahman, S. Mitra, and S. Chakraborty, Class. Quantum Grav. 37, 195004 (2020), arXiv: 2001.00599.

    Article  ADS  Google Scholar 

  86. E. Berti, V. Cardoso, and M. Casals, Phys. Rev. D 73, 024013 (2006), arXiv: gr-qc/0511111.

    Article  ADS  MathSciNet  Google Scholar 

  87. R. Brito, V. Cardoso, and P. Pani, Superradiance: Energy Extraction, Black-Hole Bombs and Implications for Astrophysics and Particle Physics, In: Lecture Notes in Physics, Vol. 906 (Springer International Publishing, Cham, 2015).

    Google Scholar 

  88. S. W. Hawking, Commun. Math. Phys. 25, 152 (1972).

    Article  ADS  Google Scholar 

  89. M. Cabero, C. D. Capano, O. Fischer-Birnholtz, B. Krishnan, A. B. Nielsen, A. H. Nitz, and C. M. Biwer, Phys. Rev. D 97, 124069 (2018), arXiv: 1711.09073.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Xiao Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11875151, and 11522541), and the Fundamental Research Funds for the Central Universities (Grant Nos. lzujbky2019-it21, and lzujbky-2019-ct06). We acknowledge Shao-Wen Wei for useful suggestions and thank Jun-Jie Wan for many inspiring discussions. Particularly, we appreciate the referees’ patience and comments and also thank Yu-Peng Zhang for his invaluable help.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, WB., Yang, SJ., Tan, Q. et al. Overcharging a Reissner-Nordström Taub-NUT regular black hole. Sci. China Phys. Mech. Astron. 64, 260411 (2021). https://doi.org/10.1007/s11433-020-1659-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1659-0

Keywords

Navigation