Skip to main content
Log in

Quantum beetle antennae search: a novel technique for the constrained portfolio optimization problem

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we have formulated quantum beetle antennae search (QBAS), a meta-heuristic optimization algorithm, and a variant of beetle antennae search (BAS). We apply it to portfolio selection, a well-known finance problem. Quantum computing is gaining immense popularity among the scientific community as it outsmarts the conventional computing in efficiency and speed. All the traditional computing algorithms are not directly compatible with quantum computers, for that we need to formulate their variants using the principles of quantum mechanics. In the portfolio optimization problem, we need to find the set of optimal stock such that it minimizes the risk factor and maximizes the mean-return of the portfolio. To the best of our knowledge, no quantum meta-heuristic algorithm has been applied to address this problem yet. We apply QBAS on real-world stock market data and compare the results with other meta-heuristic optimization algorithms. The results obtained show that the QBAS outperforms swarm algorithms such as the particle swarm optimization (PSO) and the genetic algorithm (GA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Markowitz H. Portfolio selection. J Finance, 1952, 7: 77–91

    Google Scholar 

  2. Chalermkraivuth K C, Chakraborty A, Clark M C, et al. Methods and systems for analytical-based multifactor multiobjective portfolio risk optimization. US Patent 7 640 201, 2009-12-29

  3. Li D, Ng W L. Optimal dynamic portfolio selection: multiperiod mean-variance formulation. Math Finance, 2000, 10: 387–406

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhu H, Wang Y, Wang K, et al. Particle swarm optimization (PSO) for the constrained portfolio optimization problem. Expert Syst Appl, 2011, 38: 10161–10169

    Article  Google Scholar 

  5. Branke J, Scheckenbach B, Stein M, et al. Portfolio optimization with an envelope-based multi-objective evolutionary algorithm. Eur J Oper Res, 2009, 199: 684–693

    Article  MathSciNet  MATH  Google Scholar 

  6. Doerner K, Gutjahr W J, Hartl R F, et al. Pareto ant colony optimization: a metaheuristic approach to multiobjective portfolio selection. Ann Oper Res, 2004, 131: 79–99

    Article  MathSciNet  MATH  Google Scholar 

  7. Ling S, Wang H, Liu P X. Adaptive fuzzy dynamic surface control of flexible-joint robot systems with input saturation. IEEE/CAA J Autom Sin, 2019, 6: 97–107

    Article  MathSciNet  Google Scholar 

  8. Wang H, Liu P X, Zhao X, et al. Adaptive fuzzy finite-time control of nonlinear systems with actuator faults. IEEE Trans Cybern, 2020, 50: 1786–1797

    Article  Google Scholar 

  9. Chang T J, Yang S C, Chang K J. Portfolio optimization problems in different risk measures using genetic algorithm. Expert Syst Appl, 2009, 36: 10529–10537

    Article  Google Scholar 

  10. Wang Q, Chen S, Luo X. An adaptive latent factor model via particle swarm optimization. Neurocomputing, 2019, 369: 176–184

    Article  Google Scholar 

  11. Cheng L, Liu W, Yang C, et al. A neural-network-based controller for piezoelectric-actuated stick-slip devices. IEEE Trans Ind Electron, 2018, 65: 2598–2607

    Article  Google Scholar 

  12. Deng G F, Lin W T. Ant colony optimization for markowitz mean-variance portfolio model. In: Proceedings of International Conference on Swarm, Evolutionary, and Memetic Computing. Berlin: Springer, 2010. 238–245

    Google Scholar 

  13. Ammar E, Khalifa H A. Fuzzy portfolio optimization a quadratic programming approach. Chaos Solitons Fractals, 2003, 18: 1045–1054

    Article  MathSciNet  MATH  Google Scholar 

  14. Doerner K F, Gutjahr W J, Hartl R F, et al. Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection. Eur J Oper Res, 2006, 171: 830–841

    Article  MathSciNet  MATH  Google Scholar 

  15. Niu B, Xue B, Li L, et al. Symbiotic multi-swarm PSO for portfolio optimization. In: Proceedings of International Conference on Intelligent Computing. Berlin: Springer, 2009. 776–784

    Google Scholar 

  16. Sadigh A N, Mokhtari H, Iranpoor M, et al. Cardinality constrained portfolio optimization using a hybrid approach based on particle swarm optimization and hopfield neural network. Adv Sci Lett, 2012, 17: 11–20

    Article  Google Scholar 

  17. Ahari G S, Ghaffari-Nasab N, Makui A, et al. A portfolio selection using fuzzy analytic hierarchy process: a case study of iranian pharmaceutical industry. Int J Indust Eng Comput, 2011, 2: 225–236

    Google Scholar 

  18. Raei R, Jahromi M B. Portfolio optimization using a hybrid of fuzzy ANP, VIKOR and TOPSIS. Management Sci Lett, 2012, 2: 2473–2484

    Article  Google Scholar 

  19. Gupta P, Mehlawat M K, Mittal G. Asset portfolio optimization using support vector machines and real-coded genetic algorithm. J Glob Opt, 2012, 53: 297–315

    Article  MathSciNet  MATH  Google Scholar 

  20. Guijarro F, Tsinaslanidis P E. A surrogate similarity measure for the mean-variance frontier optimisation problem under bound and cardinality constraints. J Oper Res Soc, 2019. doi: https://doi.org/10.1080/01605682.2019.1657367

  21. Guijarro F. A similarity measure for the cardinality constrained frontier in the mean-variance optimization model. J Oper Res Soc, 2018, 69: 928–945

    Article  Google Scholar 

  22. Yu L, Wang S, Wen F, et al. Genetic algorithm-based multi-criteria project portfolio selection. Ann Oper Res, 2012, 197: 71–86

    Article  MathSciNet  MATH  Google Scholar 

  23. García F, Guijarro F, Oliver J. Index tracking optimization with cardinality constraint: a performance comparison of genetic algorithms and tabu search heuristics. Neural Comput Appl, 2018, 30: 2625–2641

    Article  Google Scholar 

  24. Michaud R O. The Markowitz optimization enigma: is ‘optimized’ optimal? Financial Analysts J, 1989, 45: 31–42

    Article  Google Scholar 

  25. Yang C, Peng G, Li Y, et al. Neural networks enhanced adaptive admittance control of optimized robot-environment interaction. IEEE Trans Cybern, 2019, 49: 2568–2579

    Article  Google Scholar 

  26. Yang C, Luo J, Liu C, et al. Haptics electromyography perception and learning enhanced intelligence for teleoperated robot. IEEE Trans Automat Sci Eng, 2019, 16: 1512–1521

    Article  Google Scholar 

  27. Venturelli D, Kondratyev A. Reverse quantum annealing approach to portfolio optimization problems. Quantum Mach Intell, 2019, 1: 17–30

    Article  Google Scholar 

  28. Jin L, Li S, La H M, et al. Manipulability optimization of redundant manipulators using dynamic neural networks. IEEE Trans Ind Electron, 2017, 64: 4710–4720

    Article  Google Scholar 

  29. Shi Y, Zhang Y. Solving future equation systems using integral-type error function and using twice ZNN formula with disturbances suppressed. J Franklin Institute, 2019, 356: 2130–2152

    Article  MathSciNet  MATH  Google Scholar 

  30. Marzec M. Portfolio optimization: applications in quantum computing. In: Handbook of High-Frequency Trading and Modeling in Finance. Hoboken: John Wiley & Sons, Inc., 2016. 73–106

    Chapter  Google Scholar 

  31. Zhang Y, Qi Z, Yang M, et al. Step-width theoretics and numerics of four-point general DTZN model for future minimization using Jury stability criterion. Neurocomputing, 2019, 357: 231–239

    Article  Google Scholar 

  32. Zhang Y, Qi Z, Qiu B, et al. Zeroing neural dynamics and models for various time-varying problems solving with ZLSF models as minimization-type and Euler-type special cases. IEEE Comput Intell Mag, 2019, 14: 52–60

    Article  Google Scholar 

  33. Gruska J. Quantum Computing, Volume 2005. London: McGraw-Hill, 1999

    MATH  Google Scholar 

  34. Luo S. Quantum discord for two-qubit systems. Phys Rev A, 2008, 77: 042303

    Article  Google Scholar 

  35. Bouwmeester D, Zeilinger A. The physics of quantum information: basic concepts. In: The Physics of Quantum Information. Berlin: Springer, 2000

    Chapter  MATH  Google Scholar 

  36. Layeb A, Boussalia S R. A novel quantum inspired cuckoo search algorithm for bin packing problem. Int J Inform Tech Comput Sci, 2012, 4: 58–67

    Google Scholar 

  37. Yang S Y, Wang M, Jiao L C. A quantum particle swarm optimization. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), 2004. 320–324

  38. Sun J, Feng B, Xu W. Particle swarm optimization with particles having quantum behavior. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), 2004. 325–331

  39. Chen D, Li S, Wu Q, et al. New disturbance rejection constraint for redundant robot manipulators: an optimization perspective. IEEE Trans Ind Inf, 2020, 16: 2221–2232

    Article  Google Scholar 

  40. Wang L, Niu Q, Fei M. A novel quantum ant colony optimization algorithm. In: Proceedings of International Conference on Life System Modeling and Simulation. Berlin: Springer, 2007. 277–286

    Google Scholar 

  41. Montiel O, Rubio Y, Olvera C, et al. Quantum-inspired acromyrmex evolutionary algorithm. Sci Reports, 2019, 9: 1–10

    Google Scholar 

  42. Lee J C, Lin W M, Liao G C, et al. Quantum genetic algorithm for dynamic economic dispatch with valve-point effects and including wind power system. Int J Electrical Power Energy Syst, 2011, 33: 189–197

    Article  Google Scholar 

  43. Sun Y, Zhang J, Li G, et al. Optimized neural network using beetle antennae search for predicting the unconfined compressive strength of jet grouting coalcretes. Int J Numer Anal Methods Geomech, 2019, 43: 801–813

    Article  Google Scholar 

  44. Wu Q, Shen X, Jin Y, et al. Intelligent beetle antennae search for UAV sensing and avoidance of obstacles. Sensors, 2019, 19: 1758

    Article  Google Scholar 

  45. Lin M-J, Li Q-H. A hybrid optimization method of beetle antennae search algorithm and particle swarm optimization. DEStech Trans Eng Tech Res, 2018. doi: https://doi.org/10.12783/dtetr/ecar2018/26379

  46. Fei S W, He C X. Prediction of dissolved gases content in power transformer oil using BASA-based mixed kernel RVR model. Int J Green Energy, 2019, 16: 652–656

    Article  MathSciNet  Google Scholar 

  47. Li Q, Wang Z, Wei A. Research on optimal scheduling of wind-pv-hydro-storage power complementary system based on BAS algorithm. In: Proceedings of IOP Conference Series: Materials Science and Engineering, 2019. 072059

  48. Wang J, Chen H. BSAS: beetle swarm antennae search algorithm for optimization problems. 2018. ArXiv: 1807.10470

  49. Li Q, Wei A, Zhang Z. Application of economic load distribution of power system based on BAS-PSO. In: Proceedings of IOP Conference Series: Materials Science and Engineering, 2019. 072056

  50. Wu Q, Lin H, Jin Y, et al. A new fallback beetle antennae search algorithm for path planning of mobile robots with collisionfree capability. Soft Comput, 2020, 24: 2369–2380

    Article  Google Scholar 

  51. Mu Y, Li B, An D, et al. Three-dimensional route planning based on the beetle swarm optimization algorithm. IEEE Access, 2019, 7: 117804

    Article  Google Scholar 

  52. Fan Y, Shao J, Sun G. Optimized PID controller based on beetle antennae search algorithm for electro-hydraulic position servo control system. Sensors, 2019, 19: 2727

    Article  Google Scholar 

  53. Xie S, Chu X, Zheng M, et al. Ship predictive collision avoidance method based on an improved beetle antennae search algorithm. Ocean Eng, 2019, 192: 106542

    Article  Google Scholar 

  54. Khan A H, Li S, Luo X. Obstacle avoidance and tracking control of redundant robotic manipulator: an RNN-based meta-heuristic approach. IEEE Trans Ind Inf, 2020, 16: 4670–4680

    Article  Google Scholar 

  55. Kim J H, Kim W C, Fabozzi F J. Portfolio selection with conservative short-selling. Finance Res Lett, 2016, 18: 363–369

    Article  Google Scholar 

  56. Sharpe W F. The Sharpe Ratio. J Portfolio Management, 1994, 21: 49–58

    Article  Google Scholar 

  57. Jiang X, Li S. BAS: beetle antennae search algorithm for optimization problems. 2017. ArXiv: 1710.10724

  58. Wang H, Liu X P, Xie X, et al. Adaptive fuzzy asymptotical tracking control of nonlinear systems with unmodeled dynamics and quantized actuator. Inf Sci, 2018. doi: https://doi.org/10.1016/j.ins.2018.04.011

  59. Zhang Y, Li S, Xu B. Convergence analysis of beetle antennae search algorithm and its applications. 2019. ArXiv: 1904.02397

  60. Adorio E P, Diliman U. MVF-multivariate test functions library in C for unconstrained global optimization. Quezon City, 2005. 100–104

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwei Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.T., Cao, X., Li, S. et al. Quantum beetle antennae search: a novel technique for the constrained portfolio optimization problem. Sci. China Inf. Sci. 64, 152204 (2021). https://doi.org/10.1007/s11432-020-2894-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-2894-9

Keywords

Navigation