Skip to main content
Log in

Subminiature Light Sources Based on Semiconductor Nanostructures

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The paper states the operating principles of subminiature semiconductor emitters and offers the research results of the performance for those emitters that were developed and manufactured at the Rzhanov Institute of Semiconductor physics of SB RAS over the last three years. Single photon emitter based on Al\({}_{x}\)In\({}_{1-x}\)As/Al\({}_{y}\)Ga\({}_{1-y}\)As quantum dots has been developed. Hanbury Brown and Twiss experiment has been carried out to measure the photon statistics. The photon correlation function demonstrates a clear photon antibunching effect (\(g^{2}\)(0) \(\approx\)0.04), which is a direct evidence of single photon emission by single Al\({}_{x}\)In\({}_{1-x}\)As quantum dots. The results of developing single-mode vertical-cavity surface-emitting lasers with a wavelength of 794.8 nm future-oriented for application in chip-scale atomic clock and operating at the transition 5S\({}_{1/2}\to\)5P\({}_{1/2}\) of Rb\({}^{87}\) are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, Ed. by R. Michalzik (Springer-Verlag, Berlin, 2013). https://doi.org/10.1007/978-3-642-24986-0

  2. D. Bouwmeester, A. K. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, Berlin, 2000). https://doi.org/10.1007/978-3-662-04209-0

  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, ‘‘Quantum cryptography,’’ Rev. Mod. Phys. 74, 145–195 (2002). https://doi.org/10.1103/RevModPhys.74.145

    Article  ADS  MATH  Google Scholar 

  4. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 2008). https://doi.org/10.1007/978-3-540-28574-8

  5. Single Semiconductor Quantum Dots, Ed. by P. Michler (Springer, Berlin, 2009). https://doi.org/10.1007/978-3-540-87446-1

  6. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons, Chichester, 1999).

    Google Scholar 

  7. Semiconductor Nanostructures, Ed. by D. Bimberg (Springer, Berlin, 2008). https://doi.org/10.1007/978-3-540-77899-8

  8. Single Quantum Dots, Ed. by P. Michler. (Springer-Verlag, Berlin, 2003). https://doi.org/10.1007/b13751

  9. Self-Assembled Quantum Dots, Ed. by Z. M. Wang (Springer, New York, 2008). https://doi.org/10.1007/978-0-387-74191-8

  10. A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bomberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, ‘‘Electrically driven single quantum dot polarised single photon emitter,’’ Electron. Lett. 45, 566–567 (2009). https://doi.org/10.1049/el:20061076

    Article  ADS  Google Scholar 

  11. D. Bimberg, E. Stock, A. Lochmann, A. Schliwa, J. A. Tofflinger, W. Unrau, M. Munnix, S. Rodt, V. A. Haisler, A. I. Toropov, A. Bakarov, and A. K. Kalagin, ‘‘Quantum dots for single- and entangled- photon emitters,’’ IEEE Photon. J. 1, 58–68 (2009). https://doi.org/10.1109/JPHOT.2009.2025329

    Article  ADS  Google Scholar 

  12. T. Heindel, C. Kessler, M. Rau, Ch. Schneider, M. Furst, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Robach, S. Nauerth, M. Lermer, H. Weier, M. Jetter, M. Kamp, S. Reitzenstein, S. Hofling, P. Michler, H. Weinfurter, and A. Forchel, ‘‘Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range,’’ New J. Phys. 14. 083001 (2012). https://doi.org/10.1088/1367-2630/14/8/083001

    Article  ADS  Google Scholar 

  13. A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, ‘‘Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,’’ Nature Photon. 4, 302–306 (2010). https://doi.org/10.1038/nphoton.2010.2

    Article  Google Scholar 

  14. R. M. Stevenson, C. L. Salter, J. Nilsson, A. J. Bennett, M. B. Ward, I. Farrer, D. A. Ritchie, and A. J. Shields, ‘‘Indistinguishable entangled photons generated by a light-emitting diode,’’ Phys. Rev. Lett. 108, 040503 (2012). https://doi.org/10.1103/PhysRevLett.108.040503

    Article  ADS  Google Scholar 

  15. A. V. Gaisler, I. A. Derebezov, V. A. Gaisler, D. V. Dmitriev, A. I. Toropov, A. S. Kozhukhov, D. V. Shcheglov, A. V. Latyshev, and A. L. Aseev, ‘‘AlInAs quantum dots,’’ JETP Lett. 105, 103–109 (2017). https://doi.org/10.1134/S0021364017020096

    Article  ADS  Google Scholar 

  16. A. V. Gaisler, A. S. Yaroshevich, I. A. Derebezov, A. K. Kalagin, A. K. Bakarov, A. I. Toropov, D. V. Shcheglov, V. A. Gaisler, A. V. Latyshev, and A. L. Aseev, ‘‘Fine structure of the exciton states in InAs quantum dots,’’ JETP Lett. 97, 274–278 (2013). https://doi.org/10.1134/S0021364013050056

    Article  ADS  Google Scholar 

  17. Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications, Ed. by C. W. Wilsmen, H. Temkin, and L. Coldren (Cambridge Univ. Press, Cambridge, 1999).

    Google Scholar 

  18. Vertical-Cavity Surface-Emitting Lasers: Technology and Applications, Ed. by J. Cheng and N. K. Dutta (CRC Press, London, 2000). https://doi.org/10.1201/9781482282979

  19. Vertical-Cavity Surface-Emitting Lasers Devices, Ed. by H. E. Li and K. Iga. (Springer-Verlag, Berlin, 2002). https://doi.org/10.1007/978-3-662-05263-1

  20. S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, ‘‘Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,’’ Opt. Lett. 30, 2351–2353 (2005). https://doi.org/10.1364/OL.30.002351

    Article  ADS  Google Scholar 

  21. S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, ‘‘A chip-scale atomic clock based on \({}^{87}\)Rb with improved frequency stability,’’ Opt. Express 13, 1249–1253 (2005). https://doi.org/10.1364/OPEX.13.001249

    Article  ADS  Google Scholar 

  22. F. Gruet, A. Al-Samaneh, E. Kroemer, L. Bimboes, D. Miletic, C. Affolderbach, D. Wahl, R. Boudot, G. Mileti, and R. Michalzik, ‘‘Metrological characterization of custom-designed 894.6 nm VCSELs for miniature atomic clocks,’’ Opt. Express 21, 5781–5792 (2013). https://doi.org/10.1364/OE.21.005781

    Article  ADS  Google Scholar 

  23. B. Tan, Y. Tian, H. Lin, J. Chen, and S. Gu, ‘‘Noise suppression in coherent populationtrapping atomic clock by differential magneto-optic rotation detection,’’ Opt. Lett. 40, 3703–3706 (2015). https://doi.org/10.1364/OL.40.003703

    Article  ADS  Google Scholar 

  24. E. Kroemer, J. Rutkowski, V. Maurice, R. Vicarni, M. A. Hafiz, Ch. Gorecki, and R. Boudot, ‘‘Characterization of commercially available vertical-cavity surface-emitting lasers tuned on Cs D1 line at 894.6 nm for miniature atomic clocks,’’ Appl. Opt. 55, 8839–8847 (2016). https://doi.org/10.1364/AO.55.008839

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Gaisler.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaisler, V.A., Derebezov, I.A., Gaisler, A.V. et al. Subminiature Light Sources Based on Semiconductor Nanostructures. Optoelectron.Instrument.Proc. 56, 518–526 (2020). https://doi.org/10.3103/S8756699020050052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020050052

Keywords:

Navigation