Skip to main content
Log in

Growth of Nitride Heteroepitaxial Transistor Structures: from Epitaxy of Buffer Layers to Surface Passivation

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

It is demonstrated that it is possible to use the ammonia molecular beam epitaxy for growing structurally perfect high-ohmic GaN layers which allow generating SiN/Al(Ga)N/GaN heterostructures for transistors with a high mobility of electrons. The growth conditions are determined for GaN layers with smooth surface morphology (with a mean-squared deviation of \({\sim}\)2 nm) appropriate for creating sharp heteroboundaries. The possibility of improving the crystalline perfection of GaN layer due to the use of buffer high-temperature AlN layer (with the growth temperature above 940\({}^{\circ}\)C) is demonstrated. It was shown that in situ surface passivation of Al(Ga)N/GaN heterostructures by the ultrathin SiN layer allows generating normally closed transistors with unprecedented low values of the current collapse (\({\sim}1\%\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. D. Yu. Protasov, T. V. Malin, A. V. Tikhonov, A. F. Tsatsulnikov, and K. S. Zhuravlev, ‘‘Electron scattering in AlGaN/GaN heterostructures with a two-dimensional electron gas,’’ Semiconductors 47, 33–44 (2013). https://doi.org/10.1134/S1063782613010181

    Article  ADS  Google Scholar 

  2. M. Caliebe and T. Meisch, ‘‘Investigations about parasitic n-type doping in semipolar GaN,’’ in Proc. Int. Workshop on Nitride Semiconductors IWN2016, Ulm Univ., Germany, 2016, pp. 23–28.

  3. Z. Bougrioua, M. Azize, A. Jimenez, A.-F. Braña, P. Lorenzini, B. Beaumont, E. Muñoz, and P. Gibart, ‘‘Fe doping for making resistive GaN layers with low dislocation density; consequence on HEMTs,’’ Phys. Status Solidi C 2, 2424–2428 (2005). https://doi.org/10.1002/pssc.200461588

    Article  ADS  Google Scholar 

  4. W. V. Lundin, A. V. Sakharov, E. E. Zavarin, D. Yu. Kazantsev, B. Ya. Ber, M. A. Yagovkina, P. N. Brunkov, and A. F. Tsatsulnikov, ‘‘Study of GaN doping with carbon from propane in a wide range of MOVPE conditions,’’ J. Cryst. Growth 449, 108–113 (2016). https://doi.org/10.1016/j.jcrysgro.2016.06.002

    Article  ADS  Google Scholar 

  5. N. G. Weimann and L. F. Eastman, ‘‘Scattering of electrons at threading dislocations in GaN,’’ J. Appl. Phys. 83, 3656–3659 (1998). https://doi.org/10.1063/1.366585

    Article  ADS  Google Scholar 

  6. P. Gamarra, C. Lacam, M. Tordjman, J. Splettstösser, B. Schauwecker, and M.-A. di Forte-Poisson, ‘‘Optimisation of a carbon doped buffer layer for AlGaN/GaN HEMT devices,’’ J. Cryst. Growth 414, 232–236 (2015). https://doi.org/10.1016/j.jcrysgro.2014.10.025

    Article  ADS  Google Scholar 

  7. F. Schubert, S. Wirth, F. Zimmermann, J. Heitmann, Th. Mikolajick, and S. Schmult, ‘‘Growth condition dependence of unintentional oxygen incorporation in epitaxial GaN,’’ Sci. Technol. Adv. Mater. 17, 239–243 (2016). https://doi.org/10.1080/14686996.2016.1178565

    Article  Google Scholar 

  8. R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, ‘‘The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,’’ IEEE Trans. Electron Devices 48, 560–566 (2001). https://doi.org/10.1109/16.906451

    Article  ADS  Google Scholar 

  9. K. B. Lee, R. T. Green, P. A. Houston, W. S. Tan, M. J. Uren, D. J. Wallis, and T. Martin, ‘‘Bi-layer Si\({}_{x}\)N\({}_{y}\) passivation on AlGaN/GaN HEMTs to suppress current collapse and improve breakdown,’’ Semicond. Sci. Technol. 25, 125010 (2010). https://doi.org/10.1088/0268-1242/25/12/125010

    Article  ADS  Google Scholar 

  10. C. Roff, J. Benedikt, P. J. Tasker, D. J. Wallis, K. P. Hilton, J. O. Maclean, D. G. Hayes, M. J. Uren, and T. Martin, ‘‘Analysis of DC–RF dispersion in AlGaN/GaN HFETs using RF waveform engineering,’’ IEEE Trans. Electron Devices 56, 13–19 (2009). https://doi.org/10.1109/TED.2008.2008674

    Article  ADS  Google Scholar 

  11. R. Thompson, V. Kaper, T. Prunty, and J. R. Shealy, ‘‘Improved fabrication process for obtaining high power density AlGaN/GaN HEMTs,’’ in IEEE GaAs Integrated Circuit Symposium, San Diego, USA, 2003, p. 298.

  12. J. Gillespie, A. Crespo, R. Fitch, G. Jessen, D. Langley, N. Moser, D. Via, M. Williams, and M. Yannazzi, ‘‘A novel process for reduced dispersion effects in AlGaN/GaN HEMTs,’’ in CS ManTech Tech. Digest, New Orleans, LA, USA, 2005, p. 233.

    Google Scholar 

  13. J. Derluyn, S. Boeykens, K. Cheng, R. Vandersmissen, J. Das, W. Ruythooren, S. Degroote, M. R. Leys, M. Germain, and G. Borghs, ‘‘Improvement of AlGaN/GaN high electron mobility transistor structures by in situ deposition of a Si\({}_{3}\)N\({}_{4}\) surface layer,’’ J. Appl. Phys. 98, 054501 (2005). https://doi.org/10.1063/1.2008388

    Article  ADS  Google Scholar 

  14. A. P. Edwards, J. A. Mittereder, S. C. Binari, D. S. Katzer, D. F. Storm, and J. A. Roussos, ‘‘Improved reliability of AlGaN-GaN HEMTs using an NH\({}_{3}\) plasma treatment prior to SiN passivation,’’ IEEE Electron Device Lett. 26, 225–227 (2005). https://doi.org/10.1109/LED.2005.844694

    Article  ADS  Google Scholar 

  15. T. V. Malin, V. G. Mansurov, A. M. Gilinskii, D. Yu. Protasov, A. S. Kozhukhov, A. P. Vasilenko, and K. S. Zhuravlev, ‘‘Growth of AlGaN/GaN heterostructures with a two-dimensional electron gas on AlN/Al\({}_{2}\)O\({}_{3}\) substrates,’’ Optoelectron., Instrum. Data Process. 49, 429–433 (2013). https://doi.org/10.3103/S8756699013050026

    Article  Google Scholar 

  16. T. V. Malin, D. S. Milakhin, V. G. Mansurov, Yu. G. Galitsyn, A. S. Kozhuhov, V. V. Ratnikov, A. N. Smirnov, V. Yu. Davydov, and K. S. Zhuravlev, ‘‘Effect of the sapphire-nitridation level and nucleation-layer enrichment with aluminum on the structural properties of AlN layers,’’ Semiconductors 52, 789–796 (2018). https://doi.org/10.1134/S1063782618060143

    Article  ADS  Google Scholar 

  17. W. K. Burton, N. Cabrera, and F. C. Frank, ‘‘The growth of crystals and the equilibrium structure of their surfaces,’’ Phil. Trans. R. Soc., A 243, 299–358 (1951). https://doi.org/10.1098/rsta.1951.0006

  18. J. H. E. Cartwright, A. G. Checa, B. Escribano, and C. Ignacio Sainz-Díaz, ‘‘Crystal growth as an excitable medium,’’ Phil. Trans. R. Soc., A 370, 2866–2876 (2012). https://doi.org/10.1098/rsta.2011.0600

  19. K. Zhou, J. Liu, Sh. Zhang, Z. Li, M. Feng, D. Li, L. Zhang, F. Wang, J. Zhu, and H. Yang, ‘‘Hillock formation and suppression on c-plane homoepitaxial GaN layers grown by metalorganic vapor phase epitaxy,’’ J. Cryst. Growth 371, 7–10 (2013). https://doi.org/10.1016/j.jcrysgro.2013.01.029

    Article  ADS  Google Scholar 

  20. T. V. Malin, D. S. Milakhin, I. A. Aleksandrov, V. E. Zemlyakov, V. I. Egorkin, A. A. Zaitsev, D. Yu. Protasov, A. S. Kozhukhov, B. Ya. Ber, D. Yu. Kazantsev, V. G. Mansurov, and K. S. Zhuravlev, ‘‘Undoped high-resistance GaN buffer layer for AlGaN/GaN high-electron-mobility transistors,’’ Tech. Phys. Lett. 45, 761–764 (2019). https://doi.org/10.1134/S1063785019080108

    Article  ADS  Google Scholar 

  21. K. S. Zhuravlev, T. V. Malin, V. G. Mansurov, O. E. Tereshenko, K. K. Abgaryan, D. L. Reviznikov, V. E. Zemlyakov, V. I. Egorkin, Ya. M. Parnes, V. G. Tikhomirov, and I. P. Prosvirin, ‘‘AlN/GaN heterostructures for normally-off transistors,’’ Semiconductors 51, 379–386 (2017). https://doi.org/10.1134/S1063782617030277

    Article  ADS  Google Scholar 

  22. K. Zhuravlev, V. Mansurov, Yu. Galitsyn, T. Malin, D. Milakhin, and V. Zemlyakov, ‘‘Evolution of the surface states during the in situ SiN layer formation on AlN/GaN heterostructures,’’ Semicond. Sci. Technol. 35, 075004 (2020). https://doi.org/10.1088/1361-6641/ab7e44

    Article  ADS  Google Scholar 

  23. K. S. Zhuravlev, T. V. Malin, V. G. Mansurov, V. E. Zemlyakov, V. I. Egorkin, and Ya. M. Parnes, ‘‘Normally off transistors based on in situ passivated AlN/GaN heterostructures,’’ Tech. Phys. Lett. 42, 750–753 (2016). https://doi.org/10.1134/S1063785016070312

    Article  ADS  Google Scholar 

  24. S. C. Binari, K. Ikossi, J. A. Roussos, W. Kruppa, D. Park, H. B. Dietrich, D. D. Koleske, A. E. Wickenden, and R. L. Henry, ‘‘Trapping effects and microwave power performance in AlGaN/GaN HEMTs,’’ IEEE Trans. Electron Devices 48, 465–471 (2001). https://doi.org/10.1109/16.906437

    Article  ADS  Google Scholar 

  25. G. Koley, V. Tilak, L. F. Eastman, and M. G. Spencer, ‘‘Slow transients observed in AlGaN HFETs: Effects of SiN\({}_{x}\) passivation and UV illumination,’’ IEEE Trans. Electron Devices 50, 886–893 (2003). https://doi.org/10.1109/TED.2003.812489

    Article  ADS  Google Scholar 

  26. J. Joh and J. A. del Alamo, ‘‘A current-transient methodology for trap analysis for GaN high electron mobility transistors,’’ IEEE Trans. Electron Devices 58, 132–140 (2011). https://doi.org/10.1109/TED.2010.2087339

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank V.E. Zemlyakov, V.I. Egorkin, and A.A. Zaitsev from the National Research University of Electronic Technology for their aid in preparing test transistors and their characterization and B.Ya. Ber and D.Yu. Kazantsev from the Ioffe Institute of the Russian Academy of Sciences for performing SIMS measurements.

Funding

The work is supported by the State Task 0306-2019-00008 ‘‘Heterostructures based on A\({}_{3}\)B\({}_{5}\) materials for microwave electronics and microwave photoelectrronics’’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Malin.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malin, T.V., Milakhin, D.S., Mansurov, V.G. et al. Growth of Nitride Heteroepitaxial Transistor Structures: from Epitaxy of Buffer Layers to Surface Passivation. Optoelectron.Instrument.Proc. 56, 485–491 (2020). https://doi.org/10.3103/S8756699020050064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020050064

Keywords:

Navigation