Skip to main content
Log in

Transport Properties of Two-Dimensional Topological Insulators and Excitonic Condensates

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The paper reviews studies of the Laboratory of Theoretical Physics of the Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences. Two research directions are discussed: transport properties of two-dimensional excitonic systems and electron transport in two-dimensional topological insulators. Particular attention is given to excitonic systems in the mode of Bose–Einstein condensate and to the theory of conductivity of two-dimensional topogical insulator with a thickness close to the critical one caused by developed network of edge states permeating the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. M. Z. Hasan and C. L. Kane, ‘‘Colloquium: topological insulators,’’ Rev. Mod. Phys. 82, 3045–3067 (2010). https://doi.org/10.1103/RevModPhys.82.3045

    Article  ADS  Google Scholar 

  2. X.-L. Qi and Sh.-Ch. Zhang, ‘‘Topological insulators and superconductors,’’ Rev. Mod. Phys. 83, 1057–1110 (2011). https://doi.org/10.1103/RevModPhys.83.1057

    Article  ADS  Google Scholar 

  3. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, ‘‘Quantum spin hall effect and topological phase transition in HgTe quantum wells,’’ Science 314, 1757–1761 (2006). https://doi.org/10.1126/science.1133734

    Article  ADS  Google Scholar 

  4. B. A. Volkov and O. A. Pankratov, ‘‘Two-dimensional massless electrons in an inverted contact,’’ JETP Lett. 42 (4), 178–181 (1985).

    ADS  Google Scholar 

  5. G. M. Gusev, Z. D. Kvon, O. A. Shegai, N. N. Mikhailov, S. A. Dvoretsky, and J. C. Portal, ‘‘Transport in disordered two-dimensional topological insulators,’’ Phys. Rev. B 84. 121302(R) (2011). https://doi.org/10.1103/PhysRevB.84.121302

  6. Sh.-Q. Shen, Topological Insulators (Springer-Verlag, Berlin, 2017). https://doi.org/10.1007/978-3-642-32858-9

  7. M. V. Entin, M. M. Mahmoodian, and L. I. Magarill, ‘‘Linearity of the edge states energy spectrum in the 2D topological insulator,’’ EPL 118, 57002 (2017). https://doi.org/10.1209/0295-5075/118/57002

    Article  ADS  Google Scholar 

  8. M. V. Entin and L. Braginsky, ‘‘Exact solution for many-body Hamiltonian of interacting particles with linear spectrum,’’ EPL 120, 17003 (2017). https://doi.org/10.1209/0295-5075/120/17003

    Article  ADS  Google Scholar 

  9. M. V. Entin and L. Braginsky, ‘‘Edge capacitance of a two-dimensional topological insulator,’’ Phys. Rev. B 96, 115403 (2017). https://doi.org/10.1103/PhysRevB.96.115403

    Article  ADS  Google Scholar 

  10. M. V. Entin and L. I. Magarill, ‘‘Edge states on the curved boundary of a 2D topological insulator,’’ EPL 120, 37003 (2017). https://doi.org/10.1209/0295-5075/120/37003

    Article  ADS  Google Scholar 

  11. M. M. Mahmoodian, L. I. Magarill, and M. V. Entin, ‘‘Edge absorption and pure spin current in a 2D topological insulator in the Volkov–Pankratov model,’’ J. Phys.: Condens. Matter 29, 435303 (2017). https://doi.org/10.1088/1361-648X/aa8849

    Article  Google Scholar 

  12. M. M. Mahmoodian and M. V. Entin, ‘‘Microwave absorption in 2D topological insulators with a developed edge states network,’’ Phys. Status Solidi B 256, 1800652 (2019). https://doi.org/10.1002/pssb.201800652

    Article  ADS  Google Scholar 

  13. M. M. Mahmoodian and M. V. Entin, ‘‘Conductivity of a two-dimensional HgTe layer near the critical width: The role of developed edge states network and random mixture of p- and n-domains,’’ Phys. Rev. B 101, 125415 (2020). https://doi.org/10.1103/PhysRevB.101.125415

    Article  ADS  Google Scholar 

  14. R. F. Voss, ‘‘The fractal dimension of percolation cluster hulls,’’ J. Phys. A: Math. Gen. 17, L373–L377 (1984). https://doi.org/10.1088/0305-4470/17/7/001

    Article  ADS  MathSciNet  Google Scholar 

  15. A. A. High, A. T. Hammack, L. V. Butov, M. Hanson, and A. C. Gossard, ‘‘Exciton optoelectronic transistor,’’ Opt. Lett. 32, 2466–2468 (2007). https://doi.org/10.1364/OL.32.002466

    Article  ADS  Google Scholar 

  16. A. A. High, E. E. Novitskaya, L. V. Butov, M. Hanson, and A. C. Gossard, ‘‘Control of exciton fluxes in an excitonic integrated circuit,’’ Science 321 (5886), 229–231 (2008). https://doi.org/10.1126/science.1157845

    Article  ADS  Google Scholar 

  17. G. Grosso, J. Graves, A. T. Hammack, A. A. High, L. V. Butov, M. Hanson, and A. C. Gossard, ‘‘Excitonic switches operating at around 100 K,’’ Nat. Photonics 3, 577–580 (2009). https://doi.org/10.1038/nphoton.2009.166

    Article  ADS  Google Scholar 

  18. L. V. Butov, ‘‘Excitonic devices,’’ Superlattices Microstruct. 108, 2–26 (2017). https://doi.org/10.1016/j.spmi.2016.12.035

    Article  ADS  Google Scholar 

  19. M. V. Boev, V. M. Kovalev, and I. G. Savenko, ‘‘Resonant photon drag of dipolar excitons,’’ JETP Lett. 107, 737–741 (2018). https://doi.org/10.1134/S0021364018120044

    Article  ADS  Google Scholar 

  20. V. M. Kovalev, A. E. Miroshnichenko, and I. G. Savenko, ‘‘Photon drag of a Bose–Einstein condensate,’’ Phys. Rev. B 98, 165405 (2018). https://doi.org/10.1103/PhysRevB.98.165405

    Article  ADS  Google Scholar 

  21. A. V. Kolobov and J. Tominaga, Two-Dimensional Transition-Metal Dichalcogenides (Springer, Cham, 2016) https://doi.org/10.1007/978-3-319-31450-1

  22. V. M. Kovalev and I. G. Savenko, ‘‘Quantum anomalous valley Hall effect for bosons,’’ Phys. Rev. B 100, 121405(R) (2019). https://doi.org/10.1103/PhysRevB.100.121405

Download references

Funding

The work is supported by the Russian Foundation for Basic Research (in the theory on the physics of topological insulators, project no. 20-02-00622) and by the Russian Science Foundation (in the condensed excitonic systems, project no. 17-12-01039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. M. Kovalev, M. M. Mahmoodian or M. V. Entin.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boev, M.V., Braginskii, L.S., Kovalev, V.M. et al. Transport Properties of Two-Dimensional Topological Insulators and Excitonic Condensates. Optoelectron.Instrument.Proc. 56, 545–552 (2020). https://doi.org/10.3103/S8756699020050027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020050027

Keywords:

Navigation