Skip to main content
Log in

Molecular Beam Epitaxy of Strained Nanoheterostructures Based on Si, Ge, and Sn

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The results of investigating the generation of strained nanoheterostructures based on compounds with materials of group IV (Ge, Si, Sn) are presented. It is established how silver, tin, and lead atoms diffuse over the surface and what temperature dependences of diffusion coefficients are specific to atoms of these elements. It is shown that the diffusion of silver, tin, and lead atoms follows the mechanism of solid-phase wetting with generation of surface phases. The experimental data are provided that indicate the dominating role of edge dislocations and dislocation complexes of edge type in relaxation of Ge/Ge\({}_{0.5}\)Si\({}_{0.5}\)/Si(001) heterostructure. Tin-rich islands with Si pedestal on Si(001) substrate were obtained by the molecular beam epitaxy method. Firstly, the Sn film was applied on the Si surface. During the subsequent annealing an array of Sn islands, which were further used as catalysts for growing nanoobjects, was formed. Tin-rich islands with Si pedestal are formed after deposition of silicon at temperatures of 300–450\({}^{\circ}\)C on the surface with Sn islands. The growth of islands with pedestal occurred by the vapor–liquid–crystal mechanism. Intense photoluminescence was revealed from the tin-rich islands with Si pedestals in the wavelength range 1.3–1.7 \(\mu\)m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. M. R. Bauer, J. Tolle, C. Bungay, A. V. G. Chizmeshya, D. J. Smith, J. Menéndez, and J. Kouvetakis, ‘‘Tunable band structure in diamond–cubic tin–germanium alloys grown on silicon substrates,’’ Solid State Commun. 127, 355–359 (2003). https://doi.org/10.1016/S0038-1098(03)00446-0

    Article  ADS  Google Scholar 

  2. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grutzmacher, ‘‘Lasing in direct-bandgap GeSn alloy grown on Si,’’ Nature Photon. 9, 88–92 (2015). https://doi.org/10.1038/nphoton.2014.321

    Article  ADS  Google Scholar 

  3. A. Mosleh, M. A. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, Th. Pham, J. M. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and Sh.-Q. Yu, ‘‘Direct growth of Ge\({}_{1-x}\)Sn\({}_{x}\) films on Si using a cold-wall ultra-high vacuum chemical-vapor-deposition system,’’ Front. Mater. 2, 30 (2015). https://doi.org/10.3389/fmats.2015.00030

    Article  ADS  Google Scholar 

  4. R. Chen, S. Gupta, Y.-Ch. Huang, Y. Huo, Ch. W. Rudy, E. Sanchez, Y. Kim, Th. I. Kamins, K. C. Saraswat, and J. S. Harris, ‘‘Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge (Sn) materials for micro-and nanophotonics,’’ Nano Lett. 14, 37–43 (2014). https://doi.org/10.1021/nl402815v

    Article  ADS  Google Scholar 

  5. S. Gupta, B. Magyari-Köpe, Yo. Nishi, and K. C. Saraswat, ‘‘Achieving direct band gap in germanium through integration of Sn alloying and external strain,’’ J. Appl. Phys. 113, 073707 (2013). https://doi.org/10.1063/1.4792649

    Article  ADS  Google Scholar 

  6. H. Y. Hui, M. de la Mata, J. Arbiol, and M. A. Filler, ‘‘Low-temperature growth of axial Si/Ge nanowire heterostructures enabled by trisilane,’’ Chem. Mater. 29, 3397–3402 (2017). https://doi.org/10.1021/acs.chemmater.6b03952

    Article  Google Scholar 

  7. S. Assali, A. Dijkstra, A. Li, S. Koelling, M. A. Verheijen, L. Gagliano, N. von den Driesch, D. Buca, P. M. Koenraad, J. E. M. Haverkort, and E. P. A. M. Bakkers, ‘‘Growth and optical properties of direct band gap Ge/Ge\({}_{0{,}87}\)Sn\({}_{0{,}13}\) Core/Shell nanowire arrays,’’ Nano Lett. 17, 1538–1544 (2017). https://doi.org/10.1021/acs.nanolett.6b04627

    Article  ADS  Google Scholar 

  8. M. Jeon, H. Uchiyama, and K. Kamisako, ‘‘Characterization of Tin-catalyzed silicon nanowires synthesized by the hydrogen radical-assisted deposition method,’’ Mater. Lett. 63, 246–248 (2009). https://doi.org/10.1016/j.matlet.2008.10.005

    Article  Google Scholar 

  9. R. S. Wagner and W. C. Ellis, ‘‘Vapor-liquid-solid mechanism of single crystal growth,’’ Appl. Phys. Lett. 4, 89–90 (1964). https://doi.org/10.1063/1.1753975

    Article  ADS  Google Scholar 

  10. E. I. Givargizov, ‘‘Fundamental aspects of VLS growth,’’ J. Crystal Growth. 31, 20–30 (1975). https://doi.org/10.1016/0022-0248(75)90105-0

    Article  ADS  Google Scholar 

  11. A. E. Dolbak and B. Z. Ol’shanetskii, ‘‘Diffusion of silver over atomically clean silicon surfaces,’’ J. Exp. Theor. Phys. 143, 952–956 (2013). https://doi.org/10.1134/S1063776113060046

    Article  ADS  Google Scholar 

  12. W. M. Lomer, ‘‘A dislocation reaction in the face-centred cubic lattice,’’ Philos. Mag. 42, 1327–1331 (1951). https://doi.org/10.1080/14786444108561389

    Article  Google Scholar 

  13. S. Mader, A. E. Blakeslee, and J. Angilello, ‘‘The interpretation of dislocation contrast in x-ray topographs of GaAs\({}_{1-x}\)P\({}_{x}\),’’ J. Appl. Phys. 45, 4730–4734 (1974). https://doi.org/10.1063/1.1663126

    Article  ADS  Google Scholar 

  14. E. P. Kvam, D. M. Maher, and C. J. Humpreys, ‘‘Variation of dislocation morphology with strain in Ge\({}_{x}\)Si\({}_{1-x}\) epilayers on (100) Si,’’ J. Mater. Res. 5, 1900–1907 (1990). https://doi.org/10.1557/JMR.1990.1900

    Article  ADS  Google Scholar 

  15. A. E. Dolbak and R. A. Zhachuk, ‘‘Diffusion of Ag, Sn, and Pb over atomically clean Ge(111) surface,’’ J. Exp. Theor. Phys. 129, 391–396 (2019). https://doi.org/10.1134/S1063776119080028

    Article  ADS  Google Scholar 

  16. T. Ichikawa, ‘‘Structural study of ultrathin Sn layers deposited onto Ge(111) and Si(111) surfaces by RHEED,’’ Surf. Sci. 140, 37–63 (1984). https://doi.org/10.1016/0039-6028(84)90380-7

    Article  ADS  Google Scholar 

  17. Yu. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, L. V. Sokolov, and A. P. Vasilenko, ‘‘Dislocation interaction of layers in the Ge/Ge-seed/Ge\({}_{x}\)Si\({}_{1-x}\)/Si(001) (\(x=0.3{-}0.5\)) system: trapping of misfit dislocations on the Ge-seed/GeSi interface,’’ Acta Mater. 61, 617–621 (2013). https://doi.org/10.1016/j.actamat.2013.05.028

    Article  ADS  Google Scholar 

  18. Yu. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, and L. V. Sokolov, ‘‘Unzipping and movement of Lomer-type edge dislocations in Ge/GeSi/Si(001) heterostructures,’’ J. Cryst. Growth 483, 265–268 (2018). https://doi.org/

    Article  ADS  Google Scholar 

  19. Y. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, and L. V. Sokolov, ‘‘Unexpected travel of Lomer-type dislocations in Ge/Ge\({}_{x}\)Si\({}_{1-x}\)/Si(001) heterostructures,’’ Thin Solid Films 616, 348–350 (2016). https://doi.org/10.1016/j.tsf.2016.08.058

    Article  ADS  Google Scholar 

  20. A. I. Nikiforov, V. A. Timofeev, V. I. Mashanov, T. A. Gavrilova, and D. V. Gulyaev, ‘‘Elastically stressed pseudomorphic SiSn island array formation with a pedestal on the Si(100) substrate using Sn as a growth catalyst,’’ J. Cryst. Growth 518, 103–107 (2019). https://doi.org/10.1016/j.jcrysgro.2019.04.021

    Article  ADS  Google Scholar 

  21. R. R. Kumar, K. N. Rao, K. Rajanna, and A. R. Phani, ‘‘Growth of tin catalyzed silicon nanowires by electron beam evaporation,’’ Adv. Mat. Lett. 4, 836–840 (2013). https://doi.org/10.5185/amlett.2013.3449

    Article  Google Scholar 

  22. V. Schmidt, S. Senz, and U. Gösele, ‘‘Diameter-dependent growth direction of epitaxial silicon nanowires,’’ Nano Lett. 5, 931–935 (2005). https://doi.org/10.1021/nl050462g

    Article  ADS  Google Scholar 

  23. V. A. Timofeev, A. I. Nikiforov, A. R. Tuktamyshev, V. I. Mashanov, I. D. Loshkarev, A. A. Bloshkin, and A. K. Gutakovskii, ‘‘Pseudomorphic GeSiSn, SiSn and Ge layers in strained heterostructures,’’ Nanotechnology 29. P. 154002 (2018). https://doi.org/10.1088/1361-6528/aaac45

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Nikiforov.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deryabin, A.S., Dolbak, A.E., Esin, M.Y. et al. Molecular Beam Epitaxy of Strained Nanoheterostructures Based on Si, Ge, and Sn. Optoelectron.Instrument.Proc. 56, 470–477 (2020). https://doi.org/10.3103/S8756699020050039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020050039

Keywords:

Navigation