Skip to main content
Log in

Properties of Quantum Wells and Their Application in Femtosecond Lasers Operating in Near IR Range with Sub GHz Pulse Repetition Rate

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The article presents a review of the design and manufacturing technology, methods and results of research on optical spectra and reflection kinetics of coupled quantum wells A\({}_{3}\)B\({}_{5}\), as well as the results of using optical gates developed on their basis for femtosecond laser mode locking Yb\({}^{3+}\):KY(WO\({}_{4})_{2}\) with a high pulse repetition rate (about 1 GHz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, ‘‘Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,’’ IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996). https://doi.org/10.1109/2944.571743

    Article  ADS  Google Scholar 

  2. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, ‘‘Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,’’ Phys. Rev. Lett. 84, 5102 (2000). https://doi.org/10.1103/PhysRevLett.84.5102

    Article  ADS  Google Scholar 

  3. Th. Udem, R. Holzwarth, and T. W. Hänsch, ‘‘Optical frequency metrology,’’ Nature 416, 233–237 (2000). https://doi.org/10.1038/416233a

    Article  ADS  Google Scholar 

  4. S. N. Bagayev, V. I. Denisov, V. M. Klementyev, I. I. Korel, S. A. Kuznetsov, V. S. Pivtsov, and V. F. Zakharyash, ‘‘Femtosecond combs for precision metrology,’’ in Femtosecond Laser Spectroscopy, Ed. by P. Hannaford (Springer, Boston, MA, 2005), pp. 87–108 14, 1367–1374 (2004). https://doi.org/10.1007/0-387-23294-X_4

  5. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, Th. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, Th. Kentischer, W. Schmidt, and Th. Udem, ‘‘Laser frequency combs for astronomical observations,’’ Science 321, 1335–1337 (2008). https://doi.org/10.1126/science.1161030

    Article  ADS  Google Scholar 

  6. S. A. Kuznetsov and V. S. Pivtsov, ‘‘A highly efficient, compact Yb:KYW laser for mobile precision systems,’’ Quantum Electron. 44, 444–447 (2014). https://doi.org/10.1070/QE2014v044n05ABEH015428

    Article  ADS  Google Scholar 

  7. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, ‘‘Frequency metrology with a turnkey allfiber system,’’ Opt. Lett. 29, 2467–2469 (2004). https://doi.org/10.1364/OL.29.002467

    Article  ADS  Google Scholar 

  8. C. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kartner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, ‘‘A laser frequency comb that enables radial velocity measurements with a precision of 1 cm \(\cdot\) s\({}^{-1}\),’’ Nature 452, 610–612 (2008). https://doi.org/10.1038/nature06854

    Article  ADS  Google Scholar 

  9. N. N. Rubtsova, A. A. Kovalyov, D. V. Ledovskikh, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, S. A. Kuznetsov, V. S. Pivtsov, and A. V. Semenko, ‘‘Optical shutters for a compact femtosecond Yb:KYW laser,’’ Laser Phys. 30, 025001 (2020). https://doi.org/10.1088/1555-6611/ab5946

    Article  ADS  Google Scholar 

  10. G. M. Borisov, V. G. Gol’dort, A. A. Kovalyov, D. V. Ledovskikh, and N. N. Rubtsova, ‘‘Femtosecond kinetics of reflection of mirrors with saturable absorption,’’ Optoelectron., Instrum. Data Process. 52, 148–152 (2016). https://doi.org/10.3103/S8756699016020060

    Article  Google Scholar 

  11. G. M. Borisov, V. G. Gol’dort, A. A. Kovalyov, D. V. Ledovskikh, and N. N. Rubtsova, ‘‘A technique for detecting subpicosecond reflection or transmission kinetics,’’ Instrum. Exp. Tech. 61, 94–98 (2018). https://doi.org/10.1134/S0020441218010025

    Article  Google Scholar 

  12. N. N. Rubtsova, N. V. Kuleshov, V. E. Kisel, S. A. Kochubei, A. A. Kovalyov, S. V. Kurilchik, V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, and T. S. Shamirzaev, ‘‘Semiconductor nanostructures modified by the UV laser radiation,’’ Laser Phys. 20, 1262–1265 (2010). https://doi.org/10.1134/S1054660X10100051

    Article  ADS  Google Scholar 

  13. J. Mangeney, J. L. Oudar, J. C. Harmand, C. Mériadec, G. Patriarche, G. Aubin, N. Stelmakh, and J. M. Lourtioz, ‘‘Utrafast saturable absorption at 1.55 \(\mu\)m in heavy-ion-irradiated quantum-well vertical cavity,’’ Appl. Phys. Lett. 76, 1371–1373 (2000). https://doi.org/10.1063/1.126035

    Article  ADS  Google Scholar 

  14. T. Okuno, Ya. Masumoto, Ya. Sakuma, Yu. Hayasaki, and H. Okamoto, ‘‘Femtosecond response time in berillium-doped low-temperature grown GaAs/AlAs multiple quantum wells,’’ Appl. Phys. Lett. 79, 764–766 (2001). https://doi.org/10.1063/1.1390478

    Article  ADS  Google Scholar 

  15. N. N. Rubtsova, G. M. Borisov, V. G. Gol’dort, A. A. Kovalyov, D. V. Ledovskikh, V. V. Preobrazhenskii, M. A. Putyato, and B. R. Semyagin, ‘‘Broadband semiconductor mirrors with a small relaxation time for passive mode-locking of NIR lasers,’’ Optoelectron., Instrum. Data Process. 55, 437–440 (2019). https://doi.org/10.3103/S8756699019050030

    Article  ADS  Google Scholar 

  16. Th. C. Schratwieser, Ch. G. Leburn, and D. T. Reid, ‘‘Highly efficient 1 GHz repetition-frequency femtosecond Yb\({}^{3+}\):KY(WO\({}_{4}\))\({}_{2}\) laser,’’ Opt. Lett. 37, 1133–1135 (2012). https://doi.org/10.1364/OL.37.001133

    Article  ADS  Google Scholar 

  17. H.-W. Yang, Ch. Kim, S. Y. Choi, G.-H. Kim, Yo. Kobayashi, F. Rotermund, and J. Kim, ‘‘1.2-GHz repetition rate, diode-pumped femtosecond Yb:KYW laser mode-locked by a CNT saturable absorber,’’ Opt. Express 20, 29518–29523 (2012). https://doi.org/10.1364/OE.20.029518

    Article  ADS  Google Scholar 

  18. S. Pekarek, A. Klenner, Th. Südmeyer, Ch. Fiebig, K. Paschke, G. Erbert, and U. Keller, ‘‘Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,’’ Opt. Express 4, 4248–4253 (2012). https://doi.org/10.1364/OE.20.004248

    Article  ADS  Google Scholar 

  19. F. X. Kärtner and U. Keller, ‘‘Stabilization of solitonlike pulses with a slow saturable absorber,’’ Opt. Lett. 20, 16–18 (1995). https://doi.org/10.1364/OL.20.000016

    Article  ADS  Google Scholar 

  20. S. M. Schweyer, B. Eder, P. Putzer, M. Mayerbacher, N. Lemke, K. U. Schreiber, U. Hugentobler, and R. Kienberger, ‘‘All-in-fiber SESAM based comb oscillator with an intra-cavity electro-optic modulator for coherent high bandwidth stabilization,’’ Opt. Express 26, 23798–23807 (2018). https://doi.org/10.1364/OE.26.023798

    Article  ADS  Google Scholar 

  21. Y. Zhou, W. Lin, H. Cheng, W. Wang, T. Qiao, Q. Qian, Sh. Xu, and Zh. Yang, ‘‘Composite filtering effect in a SESAM modelocked fiber laser with a 3.2-GHz fundamental repetition rate: switchable states from single soliton to pulse bunch,’’ Opt. Express 26, 10842–10857 (2018). https://doi.org/10.1364/OE.26.010842

    Article  ADS  Google Scholar 

  22. Zh. Zhang, T. Nakagawa, H. Takada, K. Torizuka, T. Sugaya, T. Miura, and K. Kobayashi, ‘‘Low-loss broadband semiconductor saturable absorber mirror for mode-locked Ti:sapphire lasers,’’ Opt. Commun. 176, 171–175 (2000). https://doi.org/10.1016/S0030-4018(00)00481-8

    Article  ADS  Google Scholar 

  23. J. Sun, R. Zhang, Q. Wang, L. Chai, D. Pang, J. Dai, Zh. Zhang, K. Torizuka, T. Nakagawa, and T. Sugaya, ‘‘High-average-power self-starting mode-locked Ti:sapphire laser with a broadband semiconductor saturable-absorber mirror,’’ Appl. Opt. 40, 3539–3541 (2001). https://doi.org/10.1364/AO.40.003539

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, projects nos. 18-29-20007 and 19-02-00242, and in framework of the joint grant program between the Russian Foundation for Basic Research and Subject of the Russian Federation, project no. 18-42-543001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Rubtsova.

Additional information

Translated by V. A. Alekseev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubtsova, N.N., Borisov, G.M., Kovalyov, A.A. et al. Properties of Quantum Wells and Their Application in Femtosecond Lasers Operating in Near IR Range with Sub GHz Pulse Repetition Rate. Optoelectron.Instrument.Proc. 56, 527–532 (2020). https://doi.org/10.3103/S875669902005009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S875669902005009X

Keywords:

Navigation