Skip to main content
Log in

Adjoining a Strong Unit to an Archimedean Lattice-Ordered Group

  • Published:
Order Aims and scope Submit manuscript

Abstract

Within archimedean -groups, “GSW” means there are H with strong unit (HW) and an embedding GH. A. Theorem (6.1). For X a Tychonoff space (or completely regular locale), C(X) ∈ SW iff X is pseudocompact (which means C(X) ∈ W). But any GSW embeds into various C(X), and any C(X) contains many HW. We define cardinal invariants \(\mathfrak {b}G\), \(\mathfrak {d}G\), λG which generalize respectively, the bounding and dominating numbers for \(\mathbb {R}^{\mathbb {N}}\), \(\mathfrak {b}\) and \(\mathfrak {d}\), and the π-weight of a topological space. B. Theorem (6.3, 7.5). SupposeGC(X), and X contains densely \(\bigcup _{I} X_{i}\), the Xi compact. Then GSW if either (|I| = ω and \(\mathfrak {d}G < \mathfrak {b}\)) or (\(|I| < \mathfrak {b}\) and \(\mathfrak {d}G = \omega \)). This “\(\omega , \mathfrak {b}\) symmetry” fades a bit in the following, where \(\mathfrak {p}\) is the pseudo-intersection number for \(\mathbb {R}^{\mathbb {N}}\) (\(\mathfrak {p} \le \mathfrak {b}\), with = under Martin’s Axiom). C. Theorem (8.2). GSW if either \((\mathfrak {d}G = \omega \) and \(\lambda G < \mathfrak {b}\)) or (\(\mathfrak {d}G < \mathfrak {p}\) andλG = ω). Examples (§9) show limits on the hypotheses in B and C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M., Feil, T.: Lattice-ordered groups. Reidel, Dordrecht (1988)

  2. Banaschewski, B., Hager, A.W.: Representation of H-closed monoreflections in archimedean -groups with weak unit. CGASA 9(1), 1–13 (2018)

    Article  MathSciNet  Google Scholar 

  3. Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et anneaux réticulés. (French) Lecture Notes in Mathematics, Vol. 608. Springer-Verlag, Berlin-New York. xi + 334 pp (1977)

  4. Birkhoff, G.: Lattice Theory, 3rd edition. Amer. Math. Soc. (1967)

  5. Conrad, P.: The essential closure of an archimedean lattice-ordered group. Duke Math. Journal 38, 151–160 (1971)

    Article  MathSciNet  Google Scholar 

  6. Conrad, P., Martinez, J.: Settling a number of questions about hyper-Archimedean lattice-ordered groups. Proc. Amer. Math. Soc. 109(2), 291–296 (1990)

    Article  MathSciNet  Google Scholar 

  7. Darnel, M.R.: Theory of lattice-ordered groups. Pure & Appl. Math. 187, Marcel Dekker, Basel-Hong Kong-New York (1995)

  8. Dashiell, F., Hager, A., Henriksen, M.: Order-Cauchy completions of rings and vector lattices of continuous functions. Canad. J. Math. 32(3), 657–685 (1980)

    Article  MathSciNet  Google Scholar 

  9. van Douwen, E.: The integers and topology. Handbook of set-theoretic topology (K. Kunen and J.E. Vaughan, eds.). North-Holland, Amsterdam, pp. 111–167 (1984)

  10. Engelking, R.: General Topology. Second edition. Sigma series in pure mathematics, vol. 6. Heldermann Verlag, Berlin (1989)

    Google Scholar 

  11. Fremlin, D.H.: Consequences of Martin’s axiom. Cambridge tracts in math, vol. 84. Cambridge University Press, Cambridge (1984)

    Book  Google Scholar 

  12. Gillman, L., Jerison, M.: Rings of continuous functions. The university series in higher mathematics, Van Nostrand, Princeton N.J.-Toronto-London-New York (1960)

  13. Hager, A.W.: The σ-property in C(X). Comm. Math. Univ. Carolinae 57, 231–239 (2016)

    MATH  Google Scholar 

  14. Hager, A.W., Johnson, D.G.: Some comments and examples on generation of (hyper-) archimedean -groups and f -rings. Ann. Fac. Sci. Toulouse Math. 6(19), 75–100 (2010). Fascicule Spécial

    Article  MathSciNet  Google Scholar 

  15. Hager, A., van Mill, J.: Egoroff, σ, and convergence properties in some archimedean vector lattices. Studia Math. 231, 269–285 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Hager, A.W., Robertson, L.C.: Representing and ringifying a Riesz space. Symposia Mathematica, Vol. XXI (Convegno sulle Misure su Gruppi e su Spazi Vettoriali, Convegno sui Gruppi e Anelli Ordinati, INDAM, Rome, 1975), pp. 411–431. Academic Press, London (1977)

    Google Scholar 

  17. Hager, A.W., Scowcroft, P.: Essential adjunction of a strong unit to an archimedean lattice-ordered group. Alg. Univ. 81(3), 17 (2020). Paper No. 37

    Article  MathSciNet  Google Scholar 

  18. Henriksen, M., Johnson, D.G.: On the structure of a class of archimedean lattice-ordered algebras. Fund. Math. 50, 73–94 (1961/1962)

    Article  MathSciNet  Google Scholar 

  19. Hodel, R.: Cardinal Functions, I. Handbook of set-theoretic topology (K. Kunen and J.E. Vaughan, eds.). North-Holland, Amsterdam, pp. 1–62 (1984)

  20. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  21. Koppelberg, S.: Handbook of Boolean algebras, Vol 1 (J. D. Monk and R. Bonnet, eds.). North-Holland, Amsterdam (1989)

  22. Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces. Vol. I. North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam-London. American Elsevier Publishing Co., New York (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony W. Hager.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hager, A.W., Scowcroft, P. Adjoining a Strong Unit to an Archimedean Lattice-Ordered Group. Order 38, 455–472 (2021). https://doi.org/10.1007/s11083-021-09556-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-021-09556-5

Keywords

Mathematics Subject Classification (2010)

Navigation