Skip to main content
Log in

Fundamental Analysis of Singular and Resonance Phenomena in Vibrational Polyads of the Difluorosilylene Molecule

  • SPECTROSCOPY AND PHYSICS OF ATOMS AND MOLECULES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The singular structure of lower vibrational states of the difluorosilylene molecule (up to four total excitation quanta) is studied by expansion of energies of each state into series of the high-order Rayleigh–Schrödinger perturbation theory and analysis of their implicit properties of multiple-valuedness using Padé–Hermite fourth-order approximants. The quartic surface of potential energy in dimensionless normal coordinates is calculated quantum-mechanically at the MP2/cc-pVTZ level. It is shown that one of values of multiple-valued approximants reproduces the variational solution with a high accuracy, while other values (beginning with the fourth polyad) in many cases coincide with energies of other states of the same polyad. The Fermi and Darling–Dennison resonances are analyzed based on facts of coincidence of singular complex branch points of the approximants for mutually interacting states inside a unit circle or near it on the complex plane. It is found that a pair of states can have several coinciding branch points of the solutions (in particular, inside the unit circle). A conclusion is made that this approach is an effective method for the determination of the polyad structure of vibrational states. Calculation parameters necessary for the reproducibility of key results are selected. The calculations are carried out by means of a Fortran-based software package using an arithmetic calculation package with a long mantissa of real numbers (200 digits).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. R. J. Whitehead and N. C. Handy, J. Mol. Spectrosc. 55, 356 (1975). https://doi.org/10.1016/0022-2852(75)90274-X

    Article  ADS  Google Scholar 

  2. G. D. Carney, L. L. Sprandel, and C. W. Kern, Adv. Chem. Phys. 37, 305 (1978). https://doi.org/10.1002/9780470142561.ch6

    Article  Google Scholar 

  3. S. Carter and N. C. Handy, Comput. Phys. Rep. 5, 117 (1986). https://doi.org/10.1016/0167-7977(86)90006-7

    Article  ADS  Google Scholar 

  4. T. Carrington, Can. J. Chem. 82, 900 (2004). https://doi.org/10.1139/v04-014

    Article  Google Scholar 

  5. J. M. Bowman, T. Carrington, and H. D. Meyer, Mol. Phys. 106, 2145 (2008). https://doi.org/10.1080/00268970802258609

    Article  ADS  Google Scholar 

  6. J. H. Van Vleck, Phys. Rev. 33, 467 (1929). https://doi.org/10.1103/PhysRev.33.467

    Article  ADS  Google Scholar 

  7. H. Primas, Rev. Mod. Phys. 35, 710 (1963). https://doi.org/10.1103/RevModPhys.35.710

    Article  ADS  MathSciNet  Google Scholar 

  8. F. W. Birss and J. H. Choi, Phys. Rev. A 2, 1228 (1970). https://doi.org/10.1103/PhysRevA.2.1228

    Article  ADS  MathSciNet  Google Scholar 

  9. M. R. Aliev and J. K. G. Watson, in Modern Research in Molecular Spectroscopy, Ed. by K. N. Rao (Academic, New York, 1985), Vol. 3, Chap. 1, p. 1.

    Google Scholar 

  10. M. Joyeux and D. Sugny, Can. J. Phys. 80, 1459 (2002). https://doi.org/10.1139/P02-075

    Article  ADS  Google Scholar 

  11. H. H. Nielsen, Phys. Rev. 68, 181 (1945). https://doi.org/10.1103/PhysRev.68.181

    Article  ADS  Google Scholar 

  12. Yu. S. Makushkin and V. G. Tyuterev, Perturbation Methods and Effective Hamiltonians in Molecular Spectroscopy (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  13. E. Schrödinger, Ann. Phys. 80, 437 (1926). https://doi.org/10.1002/andp.19263840404

    Article  Google Scholar 

  14. F. M. Fernández, Introduction to Perturbation Theory in Quantum Mechanics (CRC, Boca Raton/FL, 2001).

    MATH  Google Scholar 

  15. L. L. Sprandel and C. W. Kern, Mol. Phys. 24, 1383 (1972). https://doi.org/10.1080/00268977200102451

    Article  ADS  Google Scholar 

  16. C. M. Bender and T. T. Wu, Phys. Rev. 184, 1231 (1969). https://doi.org/10.1103/PhysRev.184.1231

    Article  ADS  MathSciNet  Google Scholar 

  17. C. M. Bender and T. T. Wu, Phys. Rev. D 7, 1620 (1973). https://doi.org/10.1103/PhysRevD.7.1620

    Article  ADS  Google Scholar 

  18. G. Alvarez, J. Phys. A 28, 4589 (1995). https://doi.org/10.1088/0305-4470/28/16/016

    Article  ADS  MathSciNet  Google Scholar 

  19. J. Čížek, V. Špirko, and O. Bludský, J. Chem. Phys. 99, 7331 (1993). https://doi.org/10.1063/1.465714

    Article  ADS  Google Scholar 

  20. A. V. Sergeev, J. Phys. A 28, 4157 (1995). https://doi.org/10.1088/0305-4470/28/14/030

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Čížek, E. J. Weniger, P. Bracken, and V. Špirko, Phys. Rev. E 53, 2925 (1996). https://doi.org/10.1103/PhysRevE.53.2925

    Article  ADS  MathSciNet  Google Scholar 

  22. D. Z. Goodson, Int. J. Quant. Chem. 92, 35 (2003). https://doi.org/10.1002/qua.10489

    Article  Google Scholar 

  23. E. Caliceti, M. Meyer-Hermann, P. Ribeca, A. Surzhykov, and U. D. Jentschura, Phys. Rep. 446, 1 (2007). https://doi.org/10.1016/j.physrep.2007.03.003

    Article  ADS  MathSciNet  Google Scholar 

  24. D. Z. Goodson, WIREs Comput. Mol. Sci. 2, 743 (2012). https://doi.org/10.1002/wcms.92

    Article  Google Scholar 

  25. D. Z. Goodson, in Mathematical Physics in Theoretical Chemistry, Ed. by S. M. Blinder and J. E. House (Elsevier, Amsterdam, 2019), Chap. 9.

    Google Scholar 

  26. R. E. Shafer, SIAM J. Numer. Anal. 11, 447 (1974). https://doi.org/10.1137/0711037

    Article  ADS  MathSciNet  Google Scholar 

  27. S. L. Loi and A. W. McInnes, J. Comput. Appl. Math. 11, 161 (1984). https://doi.org/10.1016/0377-0427(84)90018-9

    Article  MathSciNet  Google Scholar 

  28. J. D. Dora and C. di Crescenzo, Numer. Math. 43, 23 (1984). https://doi.org/10.1007/BF01389636

    Article  MathSciNet  Google Scholar 

  29. I. L. Mayer and B. Y. Tong, J. Phys. C 18, 3297 (1985). https://doi.org/10.1088/0022-3719/18/17/008

    Article  ADS  Google Scholar 

  30. A. V. Sergeev, U. S. S. R. Comput. Math. Math. Phys. 26, 17 (1986).

    Article  Google Scholar 

  31. S. Paszkowski, J. Comput. Appl. Math. 19 (Suppl. 1), 99 (1987). https://doi.org/10.1016/0377-0427(87)90177-4

    Article  MathSciNet  Google Scholar 

  32. A. V. Sergeev and D. Z. Goodson, J. Phys. A 31, 4301 (1998). https://doi.org/10.1088/0305-4470/31/18/018

    Article  ADS  Google Scholar 

  33. T. M. Feil and H. H. H. Homeier, Comput. Phys. Commun. 158, 124 (2004). https://doi.org/10.1016/j.cpc.2004.02.002

    Article  ADS  Google Scholar 

  34. A. Katz, Nucl. Phys. 29, 353 (1962). https://doi.org/10.1016/0029-5582(62)90191-8

    Article  Google Scholar 

  35. A. D. Bykov and K. V. Kalinin, Opt. Spectrosc. 111, 367 (2011). https://doi.org/10.1134/S0030400X11080091

    Article  ADS  Google Scholar 

  36. A. D. Bykov and K. V. Kalinin, Opt. Spectrosc. 112, 420 (2012). https://doi.org/10.1134/S0030400X12020099

    Article  ADS  Google Scholar 

  37. A. D. Bykov, K. V. Kalinin, and A. N. Duchko, Opt. Spectrosc. 114, 359 (2013). https://doi.org/10.7868/S0030403413020086

    Article  ADS  Google Scholar 

  38. A. D. Bykov, A. N. Duchko, and K. V. Kalinin, Opt. Spectrosc. 116, 557 (2014). https://doi.org/10.7868/S0030403414030040

    Article  ADS  Google Scholar 

  39. A. N. Duchko, Opt. Atmosf. Okeana. 28 (12), 1051 (2015). https://doi.org/10.15372/AOO20151201

    Article  Google Scholar 

  40. A. N. Duchko and A. D. Bykov, J. Chem. Phys. 143, 154102 (2015). https://doi.org/10.1063/1.4933239

    Article  ADS  Google Scholar 

  41. A. D. Bykov, Duchko A. N. Opt. Spectrosc. 120, 669 (2013). https://doi.org/10.7868/S0030403416050068

    Article  ADS  Google Scholar 

  42. A. N. Duchko and A. D. Bykov, Phys. Scr. 94, 105403 (2019). https://doi.org/10.1088/1402-4896/ab29fe

    Article  ADS  Google Scholar 

  43. A. N. Duchko, Cand. Sci. Dissertation (Tomsk, 2017).

  44. Z. M. Lu and M. E. Kellman, J. Chem. Phys. 107, 1 (1997). https://doi.org/10.1063/1.474366

    Article  ADS  Google Scholar 

  45. W. F. Polik and J. R. van Ommen, in Highly Excited Molecules: Relaxation, Reaction, and Structure, Ed. by A. S. Mullin and G. C. Schatz, ACS Symp. Ser., No. 678, 51 (1997). https://doi.org/10.1021/bk-1997-0678.ch004

  46. S. V. Krasnoshchekov, E. V. Isayeva, and N. F. Stepanov, J. Phys. Chem. A 116, 3691 (2012). https://doi.org/10.1021/jp211400w

    Article  Google Scholar 

  47. S. V. Krasnoshchekov, E. V. Isayeva, and N. F. Stepanov, J. Chem. Phys. 141, 234114 (2014). https://doi.org/10.1063/1.4903927

    Article  ADS  Google Scholar 

  48. W. S. Benedict, N. Gailar, and E. K. Plyler, J. Chem. Phys. 24, 1139 (1956). https://doi.org/10.1063/1.1742731

    Article  ADS  Google Scholar 

  49. V. M. Rao, R. F. Curl, P. L. Timms, and J. L. Margrave, J. Chem. Phys. 43, 2557 (1965). https://doi.org/10.1063/1.1697165

    Article  ADS  Google Scholar 

  50. V. M. Khanna, R. Hauge, R. F. Curl, and J. L. Margrave, J. Chem. Phys. 47, 5031 (1967). https://doi.org/10.1063/1.1701755

    Article  ADS  Google Scholar 

  51. J. Karolczak, R. H. Judge, and D. J. Clouthier, J. Am. Chem. Soc. 117, 9523 (1995). https://doi.org/10.1021/ja00142a020

    Article  Google Scholar 

  52. H. Shoji, T. Tanaka, and E. Hirota, J. Mol. Spectrosc. 47, 268 (1973). https://doi.org/10.1016/0022-2852(73)90010-6

    Article  ADS  Google Scholar 

  53. L. Bizzocchi and C. D. Esposti, J. Mol. Spectrosc. 235, 117 (2006). https://doi.org/10.1016/j.jms.2005.10.011

    Article  ADS  Google Scholar 

  54. V. M. Khanna, G. Besenbruch, and J. L. Margrave, J. Chem. Phys. 46, 2310 (1967). https://doi.org/10.1063/1.1841037

    Article  ADS  Google Scholar 

  55. D. E. Milligan and M. E. Jacox, J. Chem. Phys. 49, 4269 (1968). https://doi.org/10.1063/1.1669870

    Article  ADS  Google Scholar 

  56. J. W. Hastie, R. H. Hauge, and J. L. Margrave, J. Am. Chem. Soc. 91, 2536 (1969). https://doi.org/10.1021/ja01038a024

    Article  Google Scholar 

  57. G. L. Caldow, C. M. Deeley, P. H. Turner, and I. M. Mills, Chem. Phys. Lett. 82, 434 (1981). https://doi.org/10.1016/0009-2614(81)85414-0

    Article  ADS  Google Scholar 

  58. R. D. Johnson, J. W. Hudgens, and M. N. R. Ashfold, Chem. Phys. Lett. 261, 474 (1996). https://doi.org/10.1016/0009-2614(96)00990-6

    Article  ADS  Google Scholar 

  59. Y. Pak and R. C. Woods, J. Chem. Phys. 104, 5547 (1996). https://doi.org/10.1063/1.471794

    Article  ADS  Google Scholar 

  60. Y. Pak, R. C. Woods, and K. A. Peterson, J. Chem. Phys. 106, 8283 (1997). https://doi.org/10.1063/1.473891

    Article  ADS  Google Scholar 

  61. B. P. Prascher, R. M. Lucente-Schultz, and A. K. Wilson, Chem. Phys. 359, 1 (2009). https://doi.org/10.1016/j.chemphys.2009.02.009

    Article  Google Scholar 

  62. J. Li, M. Wang, C. Yang, M. Ma, and D. Tong, J. Mol. Model. 21, 108 (2015). https://doi.org/10.1007/s00894-015-2657-6

    Article  Google Scholar 

  63. M. E. Jacox, J. Phys. Chem. Ref. Data 32, 1 (2003). https://doi.org/10.1063/1.1497629

    Article  ADS  Google Scholar 

  64. S. V. Krasnoshchekov and N. F. Stepanov, Russ. J. Phys. Chem. A 82, 592 (2008).

    Google Scholar 

  65. S. V. Krasnoshchekov and N. F. Stepanov, J. Chem. Phys. 139, 184101 (2013). https://doi.org/10.1063/1.4829143

    Article  ADS  Google Scholar 

  66. S. V. Krasnoshchekov, E. O. Dobrolyubov, M. A. Syzgantseva, and R. V. Palvelev, Mol. Phys. (2020, in press). https://doi.org/10.1080/00268976.2020.1743887

  67. D. M. Smith, ACM T. Math. Software 27, 377 (2001). https://doi.org/10.1145/504210.504211

    Article  Google Scholar 

  68. D. M. Smith, Comput. Sci. Eng. 5, 88 (2003). https://doi.org/10.1109/MCISE.2003.1208649

    Article  ADS  Google Scholar 

  69. D. M. Smith, FM Multiple-Precision Software Package. http://dmsmith.lmu.build/.

  70. W. H. Press et al., Numerical Recipes in Fortran 77 (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  71. A. V. Sergeev and D. Z. Goodson, J. Chem. Phys. 124, 094111 (2006). https://doi.org/10.1063/1.2173989

    Article  ADS  Google Scholar 

  72. A. V. Sergeev, D. Z. Goodson, S. E. Wheeler, and W. D. Allen, J. Chem. Phys. 123, 064105 (2005). https://doi.org/10.1063/1.1991854

    Article  ADS  Google Scholar 

  73. D. Z. Goodson and A. V. Sergeev, Adv. Quant. Chem. 47, 193 (2004). https://doi.org/10.1016/S0065-3276(04)47011-7

    Article  Google Scholar 

  74. D. Z. Goodson and A. V. Sergeev, Phys. Lett. A 359, 481 (2006). https://doi.org/10.1016/j.physleta.2006.06.071

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are deeply grateful to Doctor of Physics and Mathematics, Professor A.D. Bykov, Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk, for consultations and support of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Krasnoshchekov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnoshchekov, S.V., Dobrolyubov, E.O. & Chang, X. Fundamental Analysis of Singular and Resonance Phenomena in Vibrational Polyads of the Difluorosilylene Molecule. Opt. Spectrosc. 128, 1927–1938 (2020). https://doi.org/10.1134/S0030400X20120942

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20120942

Keywords:

Navigation