Skip to main content
Log in

Experimental Investigations on the Thermal Diffusion Characteristics and Photoluminescence in Multiphase Micro Fluids Containing ZnO Micro Tubes and Fluorescein Dye

  • OPTICS OF LOW-DIMENSIONAL STRUCTURES, MESOSTRUCTURES, AND METAMATERIALS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Scattering of light by disordered structures is normally detrimental to their applicability in many optoelectronic devices. However, some micro and nanostructures are useful in enhancing several optical and thermal properties like emission, heat diffusion etc. For this purpose, we have optimized the low temperature hydrothermal growth method for the ZnO micro tubes which leads to the growth of ZnO as mono dispersed micro tubes. Further, these samples were used to enhance the fluorescence efficiency of disordered media consisting of micro tubes of ZnO and fluorescein dye and to optimize the thermal diffusion of the mixture which will help us optimize the composition of these microscopic inclusions in designing a random lasing medium. Dual beam thermal lens method was used for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Q. Sun, Jianmeili, and Tao Le, J. Agric. Food Chem. 66, 11209 (2018).

  2. V. A. Coleman and C. Jagadish, in Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications (Elsevier Science, Amsterdam, 2006), p. 1.

    Google Scholar 

  3. M. Caglar, S. Ilican, Y. Yazici Caglar, and F. Yakuphanoglu, Appl. Surf. Sci. 255, 4491 (2015).

    Article  ADS  Google Scholar 

  4. Y. Zhang, M. K. Ram, E. K. Stefanakos, and D. Yogi Goswami, J. Nanomater. 2012, 624520 (2012).

    Google Scholar 

  5. A. Kołodziejczak-Radzimska and T. Jesionowski, Materials 7, 2833 (2014). https://doi.org/10.3390/ma7042833

    Article  ADS  Google Scholar 

  6. L. Irimpan, V. P. N. Nampoori, and P. Radhakrishnan, J. Appl. Phys. 102, 063524 (2007).

    Article  ADS  Google Scholar 

  7. H. Dong, L. Sun, W. Zhou, X. Shen, and Z. Chen, J. Phys. Chem. C 114, 17369 (2010).

    Article  Google Scholar 

  8. R. K. Thareja and A. Mitra, Appl. Phys. B 71, 181 (2000).

    Article  ADS  Google Scholar 

  9. Sadikkakac and A. Pramuanjaroenkij, Int. J. Therm. Sci. 100, 10 (2016).

    Article  Google Scholar 

  10. M. Bahiraei, Int. J. Therm. Sci. 109, 90 (2016).

    Article  Google Scholar 

  11. F. Mladen et al., in Encyclopedia of Analytical Chemistry, Ed. by R. A. Meyers (Wiley, New York, 2010). https://doi.org/10.1002/9780470027318.a9079

    Book  Google Scholar 

  12. A. Santhi et al., Plasmonics 5, 63 (2010).

    Article  MathSciNet  Google Scholar 

  13. F. Frincy et al., in Proceedings of the International Conference on Materials, Emerging Devices, and Energy– Efficient Technologies, MEETCON, 2017.

  14. A. C. Mohan and B. Renjanadevi, Proc. Technol. 24, 761 (2016).

    Article  Google Scholar 

  15. F. Frincy, Keziya James, Hanna Mariya Joseph, E. I. Anila, and Santhi Ani Joseph, AIP Conference Proceedings 2082, 030015 (2019). https://doi.org/10.1063/1.5093833

  16. A. Kumar Prasad and M. Jain, Sci. Rep. 8, 810 (2018). https://doi.org/10.1038/s41598-017-17466-z

    Article  ADS  Google Scholar 

  17. L. Irimpan, B. Krishnan, A. Deepthy, V. P. N. Nampoori, and P. Radhakrishnan, J. Phys.: Appl. Phys. 40, 5670 (2007).

    ADS  Google Scholar 

  18. F. Frincy et al., Mater. Today Proc., 116 (2019).

  19. Q. A. H. Al-Naser et al., Mater. Res. Bull. 66, 65 (2015).

    Article  Google Scholar 

  20. P. Kumar Das, J. Mol. Liq. 240, 420 (2017).

    Article  Google Scholar 

  21. O. D. Jayakumara, V. Sudarsana, C. Sudakarb, R. Naikb, R. K. Vatsaa, and A. K. Tyagia, Scr. Mater. 62, 662 (2010).

    Article  Google Scholar 

  22. R. Prasher, P. Bhattacharya, and P. E. Phelan, Phys. Rev. Lett. 94, 025901 (2005).

    Article  ADS  Google Scholar 

  23. A. Santhi et al., Opt. Commun. 283, 313 (2010).

    Article  Google Scholar 

  24. F. Mladen et al., in Encyclopedia of Analytical Chemistry, Ed. by R. A. Meyers (Wiley, New York, 2010). https://doi.org/10.1002/9780470027318.a9079

    Book  Google Scholar 

  25. E. Shahriari et al., J. Eur. Opt. Soc. Rap. Public. 8, 13026 (2013).

    Article  Google Scholar 

  26. X. Zhang, H. Gu, and M. Fujii, J. Appl. Phys. 100, 044325 (2006). https://doi.org/10.1063/1.2259789

    Article  ADS  Google Scholar 

  27. J. J. Perez, R. G. Fuentes, J. F. S. Ramirez, and A. C. Orea, Eur. Phys. J. Spec. Top. 153, 159 (2008).

    Article  Google Scholar 

  28. J. F. Sánchez-Ramírez, J. L. Jiménez Pérez, A. Cruz Orea, R. Gutierrez Fuentes, A. Bautista-Hernández, and U. Pal, J. Nanosci. Nanotechnol. 685, 90 (2006).

    Google Scholar 

  29. M. Chandrashekar and S. Suresh, J. Heat Transfer Eng. 30, 1136 (2009).

    Article  ADS  Google Scholar 

Download references

Funding

Authors acknowledge DST-FIST and KIRAN WOS-A, India (sanction order no. 546) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Frincy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frincy, F., Anila, E.I. & Santhi, A.J. Experimental Investigations on the Thermal Diffusion Characteristics and Photoluminescence in Multiphase Micro Fluids Containing ZnO Micro Tubes and Fluorescein Dye. Opt. Spectrosc. 128, 2036–2045 (2020). https://doi.org/10.1134/S0030400X20120899

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20120899

Keywords:

Navigation