Skip to main content
Log in

Photophysical Processes in Molecules of Halogenated Fluorescein Derivatives in Anionic Reverse Micelles

  • SPECTROSCOPY OF CONDENSED MATTER
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We studied the photophysical processes of halogenated fluorescein derivatives (eosin (E), erythrosine (ER), and Rose Bengal (RB)) in aqueous micellar solutions using dynamic light scattering and stationary and time-resolved fluorescence spectroscopy. The introduction of dye molecules into reverse AOT micelles causes an increase in their hydrodynamic radii Rh. The kinetics of fluorescence of the studied dye molecules in reverse micelles was investigated. The average time \(\langle \tau \rangle \) of the excited state decreases with increasing Rh for eosin, erythrosine, and Rose Bengal, which is associated with an increase in the mobility of water molecules and a weakening of the effect of geometric limitation of dye molecules. The degrees of fluorescence anisotropy r of dye molecules in reverse micelles were measured; the r values in micellar systems are greater than in aqueous solutions and decrease with increasing Rh. For the studied dye molecules in micellar systems, the rotational correlation time θ was determined, which decreases for all studied dyes with increasing Rh, which indicates a decrease in the microviscosity of a limited aqueous medium inside the micelle. It is found that θE > θER > θRB; that is, the effect of the internal heavy atom appears in the value of the rotational correlation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. V. Bykov, V. Yu. Starokurov, and A. M. Saletsky, Opt. Spectrosc. 128, 114 (2020). https://doi.org/10.1134/S0030400X20010063

    Article  ADS  Google Scholar 

  2. D. A. Afanasyev, N. Kh. Ibrayev, A. M. Saletsky, et al., J. Lumin. 136, 358 (2013). https://doi.org/10.1016/j.jlumin.2012.11.013

    Article  Google Scholar 

  3. Y. V. Starokurov, Y. A. Gordeeva, A. M. Saletsky, S. N. Letuta, S. N. Pashkevich, and T. V. Antropova, Opt. Spectrosc. 114, 87 (2013). https://doi.org/10.1134/S0030400X13010256

    Article  ADS  Google Scholar 

  4. Y. Alvarado, C. Muro, J. Illescas, Díaz María del Carmen, and F. Riera, Biomolecules 9, 164 (2019). https://doi.org/10.3390/biom9050164

    Article  Google Scholar 

  5. T. Hashimoto, Y. Ye, Ui M, T. Ogawa, T. Matsui, and Y. Tanaka, Biochem. Biophys. Res. Commun. 514, 31 (2019). https://doi.org/10.1016/j.bbrc.2019.04.062

    Article  Google Scholar 

  6. I. H. Lone, N. R. E. Radwan, J. Aslam, and A. Akhter, Curr. Nanosci. 15, 129 (2019). https://doi.org/10.2174/1573413714666180611075115

    Article  ADS  Google Scholar 

  7. M. S. Orellano, C. Porporatto, J. J. Silber, R. D. Falcone, and N. M. Correa, Carbohydr. Polym. 171, 85 (2017). https://doi.org/10.1016/j.carbpol.2017.04.074

    Article  Google Scholar 

  8. V. Piazzini, M. D’Ambrosio, C. Luceri, L. Cinci, E. Landucci, A. R. Bilia, and M. C. Bergonzi, Molecules 24, 1688 (2019). https://doi.org/10.3390/molecules24091688

    Article  Google Scholar 

  9. P. Singh and N. Verma, Int. J. Pharm. Sci. Res. 9, 1397 (2018). https://doi.org/10.13040/IJPSR.0975-8232.9(4).1397-04

    Article  Google Scholar 

  10. A. Rahdar, M. Almasi-Kashi, A. M. Khan, M. Aliahmad, A. Salimi, M. Guettari, and H. E. G. Kohne, J. Mol. Liq. 252, 506 (2018). https://doi.org/10.1016/j.molliq.2018.01.004

    Article  Google Scholar 

  11. A. Rahdar, M. Aliahmad, A. M. Kor, and D. Sahoo, Spectrochim. Acta, A 210, 165 (2019). https://doi.org/10.1016/j.saa.2018.11.015

    Article  ADS  Google Scholar 

  12. E. Bozkurt and Ya. Onganer, J. Mol. Struct. 1173, 490 (2018). https://doi.org/10.1016/j.molstruc.2018.07.019

    Article  ADS  Google Scholar 

  13. M. Hoseini, A. Sazgarnia, and S. Sharifi, Opt. Quant. Electron. 51, 144 (2019). https://doi.org/10.1007/s11082-019-1865-1

    Article  Google Scholar 

  14. A. Rahdar, S. Salmani, and D. Sahoo, J. Mol. Struct. 1191, 237 (2019). https://doi.org/10.1016/j.molstruc.2019.04.083

    Article  ADS  Google Scholar 

  15. S. Peyghami, S. S. Sharifi, F. Rakhshanizadeh, and Kh. Alizadeh, J. Mol. Liq. 246, 157 (2017). https://doi.org/10.1016/j.molliq.2017.09.058

    Article  Google Scholar 

  16. N. Karimi, S. Sharifi, S. S. Parhizgar, and S. M. Elahi, Opt. Quant. Electron. 50, 209 (2018). https://doi.org/10.1007/s11082-018-1478-0

    Article  Google Scholar 

  17. O. I. Volkova, A. N. Baranov, and A. M. Saletsky, J. Appl. Spectrosc. 85, 381 (2018). https://doi.org/10.1007/s10812-018-0661-1

    Article  ADS  Google Scholar 

  18. S. K. Dhillon, S. L. Porter, N. Rizk, Y. Sheng, Th. McKaig, K. Burnett, B. White, H. Nesbitt, R. N. Matin, A. P. McHale, B. Callan, and J. F. Callan, J. Med. Chem. 63, 1328 (2020). https://doi.org/10.1021/acs.jmedchem.9b01802?ref=pdf

    Article  Google Scholar 

  19. A. Naranjo, A. Arboleda, J. D. Martinez, H. Durkee, C. Aguilar, N. Relhan, N. Nikpoor, A. Galor, S. R. Dubovy, R. Leblanc, H. W. Flynn, D. Miller, J. M. Parel, and G. Amescua, Am. J. Ophthalmol. 208, 387 (2019). https://doi.org/10.1016/j.ajo.2019.08.027

    Article  Google Scholar 

  20. K. Shitomi, H. Miyaji, S. Miyata, T. Sugaya, N. Ushijima, T. Akasaka, and H. Kawasaki, Photodiagn. Photodyn. Ther. 30, 101647 (2020). https://doi.org/10.1016/j.pdpdt.2019.101647

    Article  Google Scholar 

  21. S. N. Letuta, S. N. Pashkevich, A. T. Ishemgulov, and A. N. Nikiyan, Biophysics 65, 599 (2020). https://doi.org/10.1134/S0006350920040089

  22. I. M. Vlasova and A. M. Saletsky, Laser Phys. 20, 1844 (2010). https://doi.org/10.1134/S1054660X10170160

    Article  ADS  Google Scholar 

  23. I. M. Vlasova and A. M. Saletsky, J. Mol. Struct. 936, 220 (2009). https://doi.org/10.1016/j.molstruc.2009.07.043

    Article  ADS  Google Scholar 

  24. E. S. Gorodnichev, A. A. Kuleshova, A. V. Bykov, and A. M. Saletsky, J. Appl. Spectrosc. 86, 855 (2019). https://doi.org/10.1007/s10812-019-00906-1

    Article  ADS  Google Scholar 

  25. A. V. Potapov, D. B. Alekseev, I. G. Alekseeva, and A. M. Saletsky, Laser Phys. Lett. 4, 61 (2007). https://doi.org/10.1002/lapl.200610060

    Article  ADS  Google Scholar 

  26. N. Klonis and W. H. Sawyer, J. Fluoresc. 6, 147 (1996). https://doi.org/10.1007/BF00732054

    Article  Google Scholar 

  27. L. V. Levshin and A. M. Saletsky, Luminescence and Its Measurements. Molecular Luminescence (Mosk. Gos. Univ., Moscow, 1989) [in Russian].

    Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research within the framework of a scientific project no. 19-32-90123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Saletsky.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, O.I., Kuleshova, A.A., Korvatovskii, B.N. et al. Photophysical Processes in Molecules of Halogenated Fluorescein Derivatives in Anionic Reverse Micelles. Opt. Spectrosc. 128, 1970–1977 (2020). https://doi.org/10.1134/S0030400X2012108X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X2012108X

Keywords:

Navigation