Skip to main content
Log in

Historical and philosophical reflections on the Einstein-de Sitter model

  • Regular Article
  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

We present some historical and philosophical reflections on the paper “On the Relation Between the Expansion and the Mean Density of the Universe”, published by Albert Einstein and Willem de Sitter in 1932. In this famous work, Einstein and de Sitter considered a relativistic model of the expanding universe with both the cosmological constant and the curvature of space set to zero. Although the Einstein-deSitter model went on to serve as a standard model in ‘big bang’ cosmology for many years, we note that the authors do not explicitly consider the evolution of the cosmos in the paper. Indeed, the mathematics of the article are quite puzzling to modern eyes. We consider claims that the paper was neither original nor important; we find that, by providing the first specific analysis of the case of a dynamic cosmology without a cosmological constant or spatial curvature, the authors delivered a unique, simple model with a straightforward relation between cosmic expansion and the mean density of matter that set an important benchmark for both theorists and observers. We consider some philosophical aspects of the model and provide a brief review of its use as a standard ‘big bang’ model over much of the \(20{\mathrm {th}}\) century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Despite hundreds of references to the paper, we are aware of only one article that notes that the Einstein–de Sitter paper is not a ‘big bang’ model (Kragh 1997).

  2. See (Kerzberg 1989; Realdi and Peruzzi 2009) for a discussion of this debate.

  3. This point is sometimes disputed and will be discussed further in Sect. 4.

  4. Equation (2) is a special case of the so-called Friedman equation, although the authors don’t state this. The Einstein constant \(\upkappa \) is given by \(\kappa =8\pi G/c^{2}\).

  5. As this equation is not numbered in the original paper, we use the label (2’) for reasons of clarity.

  6. We use the word ‘radius’ in a loose sense here, following de Sitter.

  7. The underlying reason for this is that the equation relating the Doppler shifts of the nebulae to cosmic expansion is given by \(R'/R =\textit{ v/cr}\) where r is the distance of the source (Lemaître 1927).

  8. We have given an analysis and first English translation of the paper in (O’Raifeartaigh and McCann 2014).

  9. This was a common assumption at the time (de Sitter 1930).

  10. A well-known anecdote from Eddington suggests that the authors themselves did not consider the work to be of great importance (Eddington 1940, p128; Nussbaumer and Bieri 2009, p152).

  11. Friedman’s paper of 1924 was not well-known.

  12. A similar observation can be made about the cosmologies of Hermann Weyl, Cornelius Lanczos and Howard P. Roberston (Nussbaumer and Bieri 2009, pp. 78–82).

  13. This could be labelled the ‘shut up and observe’ phase of cosmology in analogy with the well-known ‘shut up and calculate’ phase of quantum field theory (Kaiser 2011, pp. 1–25).

  14. Note for example that steady-state models predicted a value of \(q_{\mathrm {0}} = -1\).

  15. Strong observational evidence for the existence of dark matter emerged in the 1960s (Trimble 1990, 2013).

  16. It should be noted that many theorists never truly dropped the cosmological constant (O’Raifeartaigh et al. 2018).

References

  • Albrecht, A., and P.J. Steinhardt. 1982. Cosmology for grand unified theories with radiatively induced symmetry breaking. Physical Review Letters 48 (17): 1220–1223.

    Article  ADS  Google Scholar 

  • Barrow, J. 2011. The Book of Universes. London: Vintage Books.

    Google Scholar 

  • Bondi, H. 1952. Cosmology. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Calder, L., and O. Lahav. 2010. Dark energy; how the paradigm shifted. Physics World 23 (1): 32–37.

    Article  ADS  Google Scholar 

  • Cao, Tian Yu. 1997. Conceptual Developments of 20th Century Field Theories. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Coles, P., and G.F.R. Ellis. 1994. The case for an open universe. Nature 370 (6491): 609–615.

    Article  ADS  Google Scholar 

  • de Sitter, W. 1917. On Einstein’s theory of gravitation and its astronomical consequences. Monthly Notices of the Royal Astronomical Society 78: 3–28.

    Article  ADS  Google Scholar 

  • de Sitter, W. 1930a. On the distances and radial velocities of the extragalactic nebulae, and the explanation of the latter by the relativity theory of inertia. Proceedings of the National Academy of Sciences 16: 474–488.

    Article  ADS  MATH  Google Scholar 

  • de Sitter, W. 1930b. On the magnitudes, diameters and distances of the extragalactic nebulae, and their apparent radial velocities. PNAS 5: 157–171.

    Google Scholar 

  • de Sitter, W. 1930c. The expanding universe. Discussion of Lemaître’s solution of the equations of the inertial field. Bulletin of the Astronomical Institutes of the Netherlands 5: 211–218.

    ADS  Google Scholar 

  • de Sitter, W. 1931a. Some further computations regarding non-static universes. Bulletin of the Astronomical Institutes of the Netherlands 6: 141–145.

    ADS  Google Scholar 

  • de Sitter, W. 1931b. The expanding universe. Scientia 49: 1–10.

    MATH  Google Scholar 

  • de Sitter, W. 1932. The size of the universe. Publications of the Astronomical Society of the Pacific 44 (258): 89–99.

    Article  ADS  MATH  Google Scholar 

  • Eddington, A.S. 1930. On the instability of Einstein’s spherical world. Monthly Notices of the Royal Astronomical Society 90: 668–678.

    Article  ADS  MATH  Google Scholar 

  • Eddington, A.S. 1931. The recession of the extra-galactic nebulae. Proceedings of the Royal Society A 133: 3–10.

    Google Scholar 

  • Eddington, A.S. 1933. The Expanding Universe. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Eddington, A.S. 1940. Forty Years of Astronomy. In Background to Modern Science, ed. J. Needham and W. Pagel. Cambridge University Press, Cambridge.

  • Einstein, A. 1917. Kosmologischen Betrachtungen zur allgemeinen Relativitätstheorie Sitzungsb. König. Preuss. Akad. 142–152. Reprinted in English in The Principle of Relativity. Dover 1952: 175–188.

    Google Scholar 

  • Einstein, A. 1918. Prinzipelles zur allgemeinen Relativitätstheorie. Annal. Physik55: 241-244. Available in English translation in CPAE 7 (Doc. 4). http://einsteinpapers.press.princeton.edu/vol7-trans/49

  • Einstein, A. 1931. Zum kosmologischen Problem der allgemeinen Relativitätstheorie Sitzungsb. König. Preuss. Akad., 235–237.

  • Einstein, A. 1933. Sur la structure cosmologique de l’espace. In ‘La Théorie de la Relativité Générale’, Hermann et Cie, Paris (transl. M. Solovine).

  • Einstein, A. 1945. On the cosmological problem. Appendix to The Meaning of Relativity. Princeton University Press, Princeton, New Jersey, 2nd ed. 109-132. Also available in later editions.

  • Einstein, A. 1949. Autobiographical notes. In Albert Einstein: Philosopher Scientist, The Library of Living Philosophers VII, ed. P.A. Schilpp, 1–96. Wisconsin: George Banta.

    Google Scholar 

  • Einstein, A., and W. de Sitter. 1932. On the relation between the expansion and the mean density of the universe. Proceedings of the National Academy of Sciences 18: 213–214.

    Article  ADS  MATH  Google Scholar 

  • Eisinger, J. 2011. Einstein on the Road. New York: Prometheus Books.

    Google Scholar 

  • Friedman, A. 1922. Über die Krümmung des Raumes. Zeit. Physik. 10: 377–386.

    Article  ADS  Google Scholar 

  • Friedman, A. 1924. Über die Möglichkeit einer Welt mit constanter negative Krümmung des Raumes. Zeit. Physik 21: 326–332.

    Article  ADS  Google Scholar 

  • Guichelaar, J. 2018. Willem de Sitter: Einstein’s friend and Opponent. Cham: Springer Nature.

    Book  MATH  Google Scholar 

  • Gutfreund, H., and J. Renn. 2017. The Formative Years of Relativity: The History and Meaning of Einstein’s Princeton Lectures. Princeton: Princeton University Press.

    Book  MATH  Google Scholar 

  • Harrison, E. 1981. Cosmology: The Science of the Universe. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Hawley, J.F., and K.A. Holcomb. 1998. Foundations of Modern Cosmology. Oxford: Oxford University Press.

    Google Scholar 

  • Heckmann, O. 1931. Über die Metrik des sich ausdehnenden Universums. Nach. Gesell. Wiss. Göttingen, Math.-Phys. Klasse 2: 126–131.

    MATH  Google Scholar 

  • Hubble, E. 1929. A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Sciences 15: 168–173.

    Article  ADS  MATH  Google Scholar 

  • Infeld, L. 1949. On the structure of our universe. In Albert Einstein: Philosopher Scientist, The Library of Living Philosophers VII, ed. P.A. Schilpp, 477–499. Wisconsin: George Banta.

    Google Scholar 

  • Kaiser, D. 2011. How the Hippies Saved Physics: Science, Counterculture, and the Quantum Revival. New York: Norton & Co.

    Google Scholar 

  • Kerzberg, P. 1989. The Einstein-de Sitter controversy of 1916–1917 and the rise of relativistic cosmology. In Einstein and the History of General Relativity, Einstein Studies, vol. 1, ed. D. Howard, and J. Stachel, 325–366. Boston: Birkhäuser.

    Google Scholar 

  • Kragh, H. 1996. Cosmology and Controversy. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Kragh, H. 1997. On the history and philosophy of twentieth-century cosmology. Atti Del XVI Congresso Nazionale Di Storia Della Fisica E Dell’Astronomia, ed. P. Tucci:13-53.

  • Kragh, H. 2007. Conceptions of Cosmos. Oxford: Oxford University Press.

    Google Scholar 

  • Kragh, H. 2008. The origin and earliest reception of big-bang cosmology. Publications de l’Observatoire Astronomique de Beograd 85: 7–16.

    ADS  Google Scholar 

  • Kragh, H. 2014. Historical aspects of post-1850 cosmology. AIP Conference Proceedings 1632 (1): 3–26.

    Article  ADS  Google Scholar 

  • Kragh, H., and D. Lambert. 2007. The context of discovery: Lemaître and the origin of the primeval-atom universe. Annals of Science 64 (4): 445–470.

    Article  Google Scholar 

  • Krauss, L.M., and M.S. Turner. 1995. The cosmological constant is back. General Relativity and Gravitation 27 (11): 1137–1144.

    Article  ADS  MATH  Google Scholar 

  • Lemaître, G. 1925. Note on de Sitter’s universe. Journal of Mathematics and Physics 4 (3): 188–192.

    Article  MATH  Google Scholar 

  • Lemaître, G. 1927. Un univers homogène de masse constant et de rayon croissant, rendant compte de la vitesse radiale des nébeleuses extra-galactiques. Annales de la Societe scientifique de Bruxelles 47: 49–59.

    ADS  MATH  Google Scholar 

  • Lemaître, G. 1929. La grandeur de l’espace. Revue des Questions Scientifiques 95 (4): 189–216.

    Google Scholar 

  • Lemaître, G. 1931a. A homogeneous universe of constant mass and increasing radius, accounting for the radial velocity of the extra-galactic nebulae. Monthly Notices of the Royal Astronomical Society 91: 483–490.

    Article  ADS  MATH  Google Scholar 

  • Lemaître, G. 1931b. The beginning of the world from the point of view of quantum theory. Nature 1 (27): 706.

    Article  ADS  MATH  Google Scholar 

  • Lemaître, G. 1931c. L’expansion de l’espace. Revue des Questions Scientifiques 17: 391–410.

    MATH  Google Scholar 

  • Lemaître, G. 1950. The Primeval Atom: A Hypothesis of the Origin of the Universe. Van Nostrand (New York).

  • Liddle, A. 1999. An Introduction to Modern Cosmology. New York: Wiley.

    Google Scholar 

  • Linde, A.D. 1982. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters B 108 (6): 389–393.

    Article  ADS  Google Scholar 

  • Longair, M.S. 2004. A Brief History of Cosmology. In Measuring and Modeling the Universe. Carnegie Observatories Astrophysics Series, Vol. 2, ed. W. L. Freedman. Cambridge University Press, Cambridge.

  • Longair, M.S. 2006. The Cosmic Century: A History of Astrophysics and Cosmology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Martínez, V. J. and V. Trimble 2009. Cosmologists in the Dark. In Cosmology Across Cultures, ed. J. A. Rubiño-Martín et al. ASP Conference Series 409: 47-57.

  • McCoy, C.D. 2020. Stability in cosmology, from Einstein to inflation. In Thinking About Space and Time: 100 Years of Applying and Interpreting General Relativity, Einstein Studies, vol. 15, ed. C. Beisbart, et al., 69–87. Basel: Birkhäuser.

    Chapter  Google Scholar 

  • Milne, E.A. 1933. World-structure and the expansion of the universe. Zeitschrift fur Astrophysik 6: 1–95.

    ADS  MATH  Google Scholar 

  • North, J.D. 1965. The Measure of the Universe: A History of Modern Cosmology. Oxford: Oxford University Press.

    Google Scholar 

  • Nussbaumer, H. 2014. Einstein’s conversion to the expanding universe. The European Physical Journal H 39 (1): 37–62.

    Article  ADS  Google Scholar 

  • Nussbaumer, H., and L. Bieri. 2009. Discovering the Expanding Universe. Cambridge: Cambridge University Press.

    Google Scholar 

  • Oort, J. 1932. The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems. Bulletin of the Astronomical Institutes of the Netherlands 6: 249–259.

    ADS  MATH  Google Scholar 

  • O’Raifeartaigh, C., and B. McCann. 2014. Einstein’s cosmic model of 1931 revisited: an analysis and translation of a forgotten model of the universe. The European Physical Journal H 39 (1): 63–85.

    Article  ADS  Google Scholar 

  • O’Raifeartaigh, C., M. O’Keeffe, W. Nahm, and S. Mitton. 2017. Einstein’s 1917 static model of the cosmos: a centennial review. The European Physical Journal H 42 (3): 431–474.

    Article  ADS  Google Scholar 

  • O’Raifeartaigh, C., M. O’Keeffe, W. Nahm, and S. Mitton. 2018. One hundred years of the cosmological constant: from superfluous stunt to dark energy. The European Physical Journal H 43: 73–117.

    Article  ADS  Google Scholar 

  • Ostriker, J.P., and P.J. Steinhardt. 1995. The observational case for a low-density Universe with a non-zero cosmological constant. Nature 377 (6550): 600–602.

    Article  ADS  Google Scholar 

  • Perlmutter, S., et al. 1999. Measurements of \(\Omega \) and \(\Lambda \) from 42 high redshift supernovae. Astrophysical Journal 517: 565–586.

    Article  ADS  MATH  Google Scholar 

  • Peebles, P.J.E. 2020. Cosmology’s Century: An Inside History of Our Modern Understanding of the Universe. Princeton: Princeton University Press.

    Book  MATH  Google Scholar 

  • Realdi, M., and G. Peruzzi. 2009. Einstein, de Sitter and the beginning of relativistic cosmology in 1917. General Relativity and Gravitation 41 (2): 225–247.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Realdi, M. 2019. Relativistic models and the expanding universe. In The Oxford Handbook of Modern Cosmology, ed. H. Kragh, and M. Longair, 76–129. Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Riess, A.G., et al. 1998. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astronomical Journal 116: 1009–1038.

    Article  ADS  Google Scholar 

  • Robertson, H.P. 1929. On the foundations of relativistic cosmology. Proceedings of the National Academy of Sciences 15: 822–829.

    Article  ADS  MATH  Google Scholar 

  • Robertson, H.P. 1932. The expanding universe. Science 76: 221–226.

    Article  ADS  MATH  Google Scholar 

  • Sandage, A.R. 1961. The ability of the 200-inch telescope to discriminate between selected world models. Astrophysical Journal 133: 355–389.

    Article  ADS  MathSciNet  Google Scholar 

  • Sandage, A.R. 1970. Cosmology: A search for two numbers. Physics Today 23 (2): 34–42.

    Article  Google Scholar 

  • Tolman, R.C. 1930. More complete discussion of the time-dependence of the non-static line element for the universe. Proceedings of the National Academy of Sciences 16: 409–420.

    Article  ADS  MATH  Google Scholar 

  • Tolman, R.C. 1932. Models of the physical universe. Science 75 (1945): 367–373.

    Article  ADS  MATH  Google Scholar 

  • Trimble, V. 1990. History of dark matter in the universe (1922–1974). In Modern Cosmology in Retrospect, ed. B. Bertotti, et al., 355–362. Cambridge: Cambridge University Press.

    Google Scholar 

  • Trimble, V. 2013. History of dark matter in galaxies. In Planets, Stars, and Stellar Systems Volume 5: Galactic Structure and Stellar Populations, ed. T.D. Oswalt, and G. Gilmore, 1093–1021. New York: Springer.

    Google Scholar 

Download references

Acknowledgements

Cormac O’Raifeartaigh thanks Professor Jim Peebles, Professor G. F. R. Ellis and Dr. Phillip Helbig for helpful discussions. Simon Mitton thanks St Edmund’s College, University of Cambridge for the support of his research in the history of science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cormac O’Raifeartaigh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Raifeartaigh, C., O’Keeffe, M. & Mitton, S. Historical and philosophical reflections on the Einstein-de Sitter model. EPJ H 46, 4 (2021). https://doi.org/10.1140/epjh/s13129-021-00007-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjh/s13129-021-00007-8

Navigation