Skip to main content
Log in

Spectral functions of strange vector mesons in asymmetric hyperonic matter

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We study the medium modifications of the spectral functions as well as production cross-sections of the strange vector mesons (\(\phi \), \(K^*\) and \(\bar{K^*}\)) in isospin asymmetric strange hadronic matter. These are obtained from the in-medium masses of the open strange mesons and the decay widths \(\phi \rightarrow K\bar{K}\), \(K^* \rightarrow K\pi \) and \(\bar{K^*} \rightarrow {\bar{K}}\pi \) in the hadronic medium. The decay widths are computed using a field theoretic model of composite hadrons with quark (and antiquark) constituents, from the matrix element of the light quark-antiquark pair creation term of the free Dirac Hamiltonian between the initial and final states. The matrix element is multiplied with a coupling strength parameter for the light quark-antiquark pair creation, which is fitted to the observed vacuum decay width of the decay process. There are observed to be substantial modifications of the spectral functions as well as production cross-sections of these vector mesons due to isospin asymmetry as well as strangeness of the hadronic medum at high densities. These studies should have observable consequences, e.g. in the yield of the hidden and open strange mesons arising from the isospin asymmetric high energy heavy ion collisions at the Compressed baryonic matter (CBM) experiments at the future facility at GSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this investigation are contained in the present published article.]

References

  1. C. Hartnack, H. Oeschler, Y. Leifels, E.L. Bratkovskaya, J. Aichelin, Phys. Rep. 510, 119 (2012)

    Article  ADS  Google Scholar 

  2. E. Friedman, A. Gal, Phys. Rep. 452, 89 (2007)

    Article  ADS  Google Scholar 

  3. L. Tolos, L. Fabbietti, Prog. Nucl. Part. Phys 112, 103770 (2020)

    Article  Google Scholar 

  4. D.B. Kaplan, A.E. Nelson, Phys. Lett. B 175, 57 (1986)

    Article  ADS  Google Scholar 

  5. A.E. Nelson, D.B. Kaplan, Phys. Lett. B 192, 193 (1987)

    Article  ADS  Google Scholar 

  6. N.K. Glendenning, J. Schaffner-Bielich, Phys. Rev. C 60, 025803 (1999)

    Article  ADS  Google Scholar 

  7. S. Banik, R. Nandi, D. Bandyopadhyay, Phys. Rev. C 86, 045803 (2012)

    Article  ADS  Google Scholar 

  8. B.D. Serot, Rep. Prog. Phys. 55, 1855 (1992)

    Article  ADS  Google Scholar 

  9. K. Tsushima, K. Saito, A.W. Thomas, S.V. Wright, Phys. Lett. B 429, 239 (1998)

    Article  ADS  Google Scholar 

  10. K. Tsushima, K. Saito, A.W. Thomas, S.V. Wright, Phys. Lett. E 436, 453 (1998). (ibid)

    Article  ADS  Google Scholar 

  11. K. Tsushima, A. Sibirtsev, A.W. Thomas, Phys. Rev. C 62, 064904 (2000)

    Article  ADS  Google Scholar 

  12. K. Tsushima, A. Sibirtsev, A.W. Thomas, J. Phys. G 27, 34 (2001). (ibid)

    Article  Google Scholar 

  13. G. Krein, A.W. Thomas, K. Tsushima, Prog. Part. Nucl. Phys. 100, 161 (2018)

    Article  ADS  Google Scholar 

  14. E. Oset, A. Ramos, Nucl. Phys. A 635, 99 (1998)

    Article  ADS  Google Scholar 

  15. A. Ramos, E. Oset, Nucl. Phys. A 671, 481 (2000)

    Article  ADS  Google Scholar 

  16. A. Ilner, D. Cabrera, C. Markert, E. Bratkovskaya, Phys. Rev. C 95, 014903 (2017)

    Article  ADS  Google Scholar 

  17. A. Ilner, J. Blair, D. Cabrera, C. Markert, E. Bratkovskaya, Phys. Rev. C 99, 024914 (2019)

    Article  ADS  Google Scholar 

  18. A. Mishra, E.L. Bratkovskaya, J. Schaffner-Bielich, S. Schramm, H. Stöcker, Phys. Rev. C 70, 044904 (2004)

    Article  ADS  Google Scholar 

  19. A. Mishra, S. Schramm, Phys. Rev. C 74, 064904 (2006)

    Article  ADS  Google Scholar 

  20. A. Mishra, S. Schramm, W. Greiner, Phys. Rev. C 78, 024901 (2008)

    Article  ADS  Google Scholar 

  21. A. Mishra, A. Kumar, S. Sanyal, S. Schramm, Eur. Phys. J A 41, 205 (2009)

    Article  ADS  Google Scholar 

  22. P. Papazoglou, D. Zschiesche, S. Schramm, J. Schaffner-Bielich, H. Stöcker, W. Greiner, Phys. Rev. C 59, 411 (1999)

    Article  ADS  Google Scholar 

  23. A. Mishra, K. Balazs, D. Zschiesche, S. Schramm, H. Stöcker, W. Greiner, Phys. Rev. C 69, 024903 (2004)

    Article  ADS  Google Scholar 

  24. S. Weinberg, Phys. Rev. 166, 1568 (1968)

    Article  ADS  Google Scholar 

  25. S. Coleman, J. Wess, B. Zumino, Phys. Rev. 177, 2239 (1969)

    Article  ADS  Google Scholar 

  26. C.G. Callan, S. Coleman, J. Wess, B. Zumino, Phys. Rev. 177, 2247 (1969)

    Article  ADS  Google Scholar 

  27. W.A. Bardeen, B.W. Lee, Phys. Rev. 177, 2389 (1969)

    Article  ADS  Google Scholar 

  28. J. Schechter, Phys. Rev. D 21, 3393 (1980)

    Article  ADS  Google Scholar 

  29. J. Ellis, Nucl. Phys. B 22, 478 (1970)

    Article  ADS  Google Scholar 

  30. B.A. Campbell, J. Ellis, K.A. Olive, Nucl. Phys. B 345, 57 (1990)

    Article  ADS  Google Scholar 

  31. P. A. Zyla et al (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

  32. G.E. Brown, C.-H. Lee, M. Rho, V. Thorsson, Nucl. Phys. A 567, 937 (1994)

    Article  ADS  Google Scholar 

  33. J. Schaffner-Bielich, I.N. Mishustin, J. Bondorf, Nucl. Phys. A 625, 325 (1997)

    Article  ADS  Google Scholar 

  34. T. Barnes, E.S. Swanson, Phys. Rev. C 49, 1166 (1994)

    Article  ADS  Google Scholar 

  35. S.P. Misra, Phys. Rev. D 18, 1661 (1978)

    Article  ADS  Google Scholar 

  36. S.P. Misra, Phys. Rev. D 18, 1673 (1978)

    Article  ADS  Google Scholar 

  37. A. Mishra, S.P. Misra, W. Greiner, Int. J. Mod. Phys. E 24, 1550053 (2015)

    Article  ADS  Google Scholar 

  38. A. Mishra, S.P. Misra, Phys. Rev. C 95, 065206 (2017)

    Article  ADS  Google Scholar 

  39. A. Mishra, S.P. Misra, Phys. Rev. C 102, 045204 (2020)

    Article  ADS  Google Scholar 

  40. Mishra A, Misra SP. arXiv:2005.00354 [hep-ph]

  41. Mishra A, Misra SP. arXiv:2006.03478 [nucl-th]. Int. J. Mod. Phys. E (To be published)

  42. E.S. Ackleh, T. Barnes, E.S. Swanson, Phys. Rev. D 54, 6811 (1996)

    Article  ADS  Google Scholar 

  43. T. Barnes, F.E. Close, P.R. Page, E.S. Swanson, Phys. Rev. D 55, 4157 (1997)

    Article  ADS  Google Scholar 

  44. A. Le Yaouanc, L. Oliver, O. Pene, J.-C. Raynal, Phys. Rev. D 8, 2223 (1973)

    Article  ADS  Google Scholar 

  45. A. Le Yaouanc, L. Oliver, O. Pene, J.-C. Raynal, Phys. Rev. D 9, 1415 (1974). ibid

    Article  ADS  Google Scholar 

  46. A. Le Yaouanc, L. Oliver, O. Pene, J.-C. Raynal, Phys. Rev. D 11, 1272 (1975). ibid

    Article  ADS  Google Scholar 

  47. A. Le Yaouanc, L. Oliver, O. Pene, J.-C. Raynal, Phys. Lett. B 71, 397 (1977)

    Article  ADS  Google Scholar 

  48. B. Friman, S.H. Lee, T. Song, Phys. Lett. B 548, 153 (2002)

    Article  ADS  Google Scholar 

  49. A. Kumar, A. Mishra, Eur. Phys. J. A 47, 164 (2011)

    Article  ADS  Google Scholar 

  50. A. Ilner, D. Cabrera, P. Srisawad, E. Bratkovskaya, Nucl. Phys. A 927, 249 (2014)

    Article  ADS  Google Scholar 

  51. K. Haglin, Nucl. Phys. A 584, 719 (1995)

    Article  ADS  Google Scholar 

  52. G.Q. Li, C.M. Ko, G.E. Brown, Nucl. Phys. A 611, 539 (1996)

    Article  ADS  Google Scholar 

  53. L. Tolos, D. Cabrera, A. Ramos, Phys. Rev. C 78, 045205 (2008)

    Article  ADS  Google Scholar 

  54. L. Tolos, R. Molina, E. Oset, A. Ramos, Phys. Rev. C 82, 045210 (2010)

    Article  ADS  Google Scholar 

  55. L. Tolos, D. Cabrera, R. Molina, E. Oset, A. Ramos, Prog. Theor. Phys. Suppl. 186, 384 (2010) (contribution to New Frontiers in QCD 2010: Exotic Hadron Systems and Dense Matter)

  56. D. Cabrera, L. M. Abreu, E. Bratkovskaya, A. Ilner, F. J. Llanes-Estrada, A. Ramos, L. Tolos, J. M. Torres-Rincon, J. Phys. Conf. Ser. 503, 012017 (2014) (Contribution to FAIRNESS 2013)

  57. K.P. Khemchandani, A. Martinez Torres, F.S. Navarra, M. Nielsen, L. Tolos, Phys. Rev. D 91, 094008 (2015)

    Article  ADS  Google Scholar 

  58. E. Oset, A. Ramos, Nucl. Phys. A 679, 616 (2001)

    Article  ADS  Google Scholar 

  59. E. Oset, A. Ramos, Eur. Phys. J. A 44, 445 (2010)

    Article  ADS  Google Scholar 

  60. R. Kumar, A. Kumar, Phys. Rev. C 102, 045206 (2020)

    Article  ADS  Google Scholar 

  61. C.M. Ko, P. Levai, X.J. Qiu, C.T. Li, Phys. Rev. C 45, 1400 (1992)

    Article  ADS  Google Scholar 

  62. T. Hatsuda, S.H. Lee, Phys. Rev. C 46, R34 (1992)

    Article  ADS  Google Scholar 

  63. T. Hatsuda, H. Shiomi, H. Kuwabara, Progr. Theor. Phys. 95, 1009 (1996)

    Article  ADS  Google Scholar 

  64. J.J. Cobos-Martinez, K. Tsushima, G. Krein, A.W. Thomas, Phys. Lett. B 771, 113 (2017)

    Article  ADS  Google Scholar 

  65. F. Klingl, T. Waas, W. Weise, Phys. Lett. B 431, 25 (1998)

    Article  Google Scholar 

  66. D. Cabrera, M.J.V. Vacas, Phys. Rev. C 67, 045203 (2003)

    Article  ADS  Google Scholar 

  67. T. Ishikawa et al., Phys. Lett. B 608, 215 (2005)

    Article  ADS  Google Scholar 

  68. M.H. Wood et al., Phys. Rev. Lett. 105, 112303 (2010)

    Article  ADS  Google Scholar 

  69. M. Hartmann et al., Phys. Rev. C 85, 035206 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (AM) acknowledeges financial support from Department of Science and Technology (DST), Government of India (project no. CRG/2018/002226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amruta Mishra.

Additional information

Communicated by Laura Tolos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Misra, S.P. Spectral functions of strange vector mesons in asymmetric hyperonic matter. Eur. Phys. J. A 57, 98 (2021). https://doi.org/10.1140/epja/s10050-021-00407-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00407-w

Navigation