Skip to main content
Log in

Stability analysis of a pipe conveying fluid with a nonlinear energy sink

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper considers the global stability problem of the system comprising a pipe conveying fluid and a nonlinear energy sink (PCF-NES) system. First, a quadratic form model containing a gradient term of a convex function is obtained from a high-order partial-differential-equation model of the PCF-NES system using the Galerkin approximation approach. Energy and disturbance functionals are then established based on this model. Second, a Lyapunov function is constructed based on the first-order characteristic of the convexity and energy disturbance technique to prove the global exponential stability of the approximated PCF-NES system. Finally, theoretical results are verified using numerical simulations and the positive effect of the NES on the vibration control of the entire PCF is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Benjamin T B. Dynamics of a system of articulated pipes conveying fluid. I. theory. Proc R Soc Lond A, 1961, 261: 457–486

    Article  MathSciNet  MATH  Google Scholar 

  2. Gregory R, Païdoussis M. Unstable oscillation of tubular cantilevers conveying fluid. I. theory. Proc R Soc Lond A, 1966, 293: 512–527

    Article  MATH  Google Scholar 

  3. Païdoussis M P, Issid N T. Dynamic stability of pipes conveying fluid. J Sound Vib, 1974, 33: 267–294

    Article  Google Scholar 

  4. Païdoussis M P. Fluid-Structure Interactions. Volume 2: Slender Structures and Axial Flow. Pittsburgh: Academic Press, 2004

    Google Scholar 

  5. McDonald R J, Namachchivaya N S. Pipes conveying pulsating fluid near a 0:1 resonance: local bifurcations. J Fluids Struct, 2005, 21: 629–664

    Article  Google Scholar 

  6. McDonald R J, Namachchivaya N S. Pipes conveying pulsating fluid near a 0:1 resonance: global bifurcations. J Fluids Struct, 2005, 21: 665–687

    Article  Google Scholar 

  7. Zhang Y F, Yao M H, Zhang W, et al. Dynamical modeling and multi-pulse chaotic dynamics of cantilevered pipe conveying pulsating fluid in parametric resonance. Aerospace Sci Tech, 2017, 68: 441–453

    Article  Google Scholar 

  8. Panda L, Kar R. Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances. Nonlin Dyn, 2007, 49: 9–30

    Article  MATH  Google Scholar 

  9. Liang F, Yang X D, Zhang W, et al. Nonlinear free vibration of spinning viscoelastic pipes conveying fluid. Int J Appl Mech, 2018, 10: 1850076

    Article  Google Scholar 

  10. Guo C, Zhang C, Païdoussis M. Modification of equation of motion of fluid-conveying pipe for laminar and turbulent flow profiles. In: Seismic Safety Evaluation of Concrete Dams. Oxford: Butterworth-Heinemann, 2013. 221–237

    Chapter  Google Scholar 

  11. Liang F, Yang X D, Zhang W, et al. Vibrations in 3D space of a spinning supported pipe exposed to internal and external annular flows. J Fluids Struct, 2019, 87: 247–262

    Article  Google Scholar 

  12. Alleyne A, Hedrick J K. Nonlinear adaptive control of active suspensions. IEEE Trans Contr Syst Technol, 1995, 3: 94–101

    Article  Google Scholar 

  13. Yu D, Wen J, Zhao H, et al. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid. J Sound Vib, 2008, 318: 193–205

    Article  Google Scholar 

  14. Doki H, Hiramoto K, Skelton R E. Active control of cantilevered pipes conveying fluid with constraints on input energy. J Fluids Struct, 1998, 12: 615–628

    Article  Google Scholar 

  15. Wu Y, Xue X, Shen T. Absolute stability of the Kirchhoff string with sector boundary control. Automatica, 2014, 50: 1915–1921

    Article  MathSciNet  MATH  Google Scholar 

  16. Yau C H, Bajaj A K, Nwokah O D I. Active control of chaotic vibration in a constrained flexible pipe conveying fluid. J Fluids Struct, 1995, 9: 99–122

    Article  Google Scholar 

  17. Gao Y, Wu H N, Wang J W, et al. Feedback control design with vibration suppression for flexible air-breathing hypersonic vehicles. Sci China Inf Sci, 2014, 57: 032204

    Article  MATH  Google Scholar 

  18. Yu Y, Hu J P, Zeng Y. On computer virus spreading using node-based model with time-delayed intervention strategies. Sci China Inf Sci, 2019, 62: 059201

    Article  Google Scholar 

  19. Li M L, Deng F Q, Mao X R. Basic theory and stability analysis for neutral stochastic functional differential equations with pure jumps. Sci China Inf Sci, 2019, 62: 012204

    Article  MathSciNet  Google Scholar 

  20. Ibrahim R A. Recent advances in nonlinear passive vibration isolators. J Sound Vib, 2008, 314: 371–452

    Article  Google Scholar 

  21. Erturk A, Inman D J. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust, 2008, 130: 041002

    Article  Google Scholar 

  22. de Pasquale G, Somá A, Zampieri N. Design, simulation, and testing of energy harvesters with magnetic suspensions for the generation of electricity from freight train vibrations. J Comput Nonlin Dyn, 2012, 7: 041011

    Article  Google Scholar 

  23. Smith M C. Synthesis of mechanical networks: the inerter. IEEE Trans Automat Contr, 2002, 47: 1648–1662

    Article  MathSciNet  MATH  Google Scholar 

  24. Ding H, Zhu M H, Chen L Q. Nonlinear vibration isolation of a viscoelastic beam. Nonlin Dyn, 2018, 92: 325–349

    Article  Google Scholar 

  25. Gendelman O, Manevitch L I, Vakakis A F, et al. Energy pumping in nonlinear mechanical oscillators: part I-dynamics of the underlying hamiltonian systems. J Appl Mech, 2001, 68: 34–41

    Article  MathSciNet  MATH  Google Scholar 

  26. Vakakis A F, Gendelman O. Energy pumping in nonlinear mechanical oscillators: part II-resonance capture. J Appl Mech, 2001, 68: 42–48

    Article  MathSciNet  MATH  Google Scholar 

  27. Kerschen G, Kowtko J J, Mcfarland D M, et al. Theoretical and experimental study of multimodal targeted energy transfer in a system of coupled oscillators. Nonlin Dyn, 2006, 47: 285–309

    Article  MathSciNet  MATH  Google Scholar 

  28. Gendelman O V, Sapsis T, Vakakis A F, et al. Enhanced passive targeted energy transfer in strongly nonlinear mechanical oscillators. J Sound Vib, 2011, 330: 1–8

    Article  Google Scholar 

  29. Hubbard S A, McFarland D M, Bergman L A, et al. Targeted energy transfer between a model flexible wing and nonlinear energy sink. J Aircraft, 2010, 47: 1918–1931

    Article  Google Scholar 

  30. Georgiades F, Vakakis A F. Passive targeted energy transfers and strong modal interactions in the dynamics of a thin plate with strongly nonlinear attachments. Int J Solids Struct, 2009, 46: 2330–2353

    Article  MATH  Google Scholar 

  31. Zhang Y W, Lu Y N, Chen L Q. Energy harvesting via nonlinear energy sink for whole-spacecraft. Sci China Technol Sci, 2019, 62: 1483–1491

    Article  Google Scholar 

  32. Georgiades F, Vakakis A F. Dynamics of a linear beam with an attached local nonlinear energy sink. Commun Nonlin Sci Numer Simul, 2007, 12: 643–651

    Article  MATH  Google Scholar 

  33. Panagopoulos P, Georgiades F, Tsakirtzis S, et al. Multi-scaled analysis of the damped dynamics of an elastic rod with an essentially nonlinear end attachment. Int J Solids Struct, 2007, 44: 6256–6278

    Article  MATH  Google Scholar 

  34. Viguié R, Kerschen G, Golinval J C, et al. Using passive nonlinear targeted energy transfer to stabilize drill-string systems. Mech Syst Signal Process, 2009, 23: 148–169

    Article  Google Scholar 

  35. Yang T Z, Yang X D, Li Y, et al. Passive and adaptive vibration suppression of pipes conveying fluid with variable velocity. J Vib Control, 2014, 20: 1293–1300

    Article  MathSciNet  Google Scholar 

  36. Jin J D, Song Z Y. Parametric resonances of supported pipes conveying pulsating fluid. J Fluids Struct, 2005, 20: 763–783 37

    Article  Google Scholar 

  37. Kheiri M, Païdoussis M P, Pozo G C D, et al. Dynamics of a pipe conveying fluid flexibly restrained at the ends. J Fluids Struct, 2014, 49: 360–385

    Article  Google Scholar 

  38. Liang F, Yang X D, Zhang W, et al. Dynamical modeling and free vibration analysis of spinning pipes conveying fluid with axial deployment. J Sound Vib, 2018, 417: 65–79

    Article  Google Scholar 

  39. Holmes P J. Pipes supported at both ends cannot flutter. J Appl Mech, 1978, 45: 619–622

    Article  MATH  Google Scholar 

  40. Zhang Y W, Zhang Z, Chen L Q, et al. Impulse-induced vibration suppression of an axially moving beam with parallel nonlinear energy sinks. Nonlin Dyn, 2015, 82: 61–71

    Article  MathSciNet  Google Scholar 

  41. Rockafellar R T. Convex Analysis. Princeton: Princeton University Press, 2015

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61890920, 61890921, 61773090, 61803070), Liaoning Revitalization Talents Program (Grant No. XLYC1808015), and in part by Fundamental Research Funds for the Central Universities (Grant No. DUT19LAB37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhu Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, N., Lin, S., Wu, Y. et al. Stability analysis of a pipe conveying fluid with a nonlinear energy sink. Sci. China Inf. Sci. 64, 152201 (2021). https://doi.org/10.1007/s11432-019-2822-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2822-3

Keywords

Navigation