Skip to main content
Log in

The Dirichlet–Neumann Operator for Oblique Water Waves over a Submerged Thin Cylinder and an Application

  • Research Articles
  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

The Dirichlet-Neumann operator for the linear water-wave problem describing oblique waves over a submerged horizontal cylinder of small (but otherwise, fairly arbitrary) cross-section in a layer of finite depth is constructed in the form of convergent series in powers of the small parameter characterizing the “thinness” of the cylinder. The terms of these series are expressed through the solution of the exterior Neumann problem for the Laplace equation describing the flow of unbounded fluid past the cylinder. As an application, discrete eigenvalues of this operator which are frequancies of trapped modes of the problem are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. S. Yu. Dobrokhotov, “Nonlocal Analogs of the Nonlinear Boussinesq Equation for Surface Waves over a Rough Bottom and Their Asymptotic Solutions”, Sov. Phys. Dokl., 32 (1986), 18–20.

    ADS  MATH  Google Scholar 

  2. W. Craig, and C. Sulem, “Numerical Simulation of Gravity Waves”, J. Comput. Phys., 108 (1993), 73–83.

    Article  ADS  MathSciNet  Google Scholar 

  3. B. Hu and D. P. Nicholls, “Analyticity of Dirichlet–Neumann Operators on Hölder and Lipschitz Domains”, SIAM J. Math. Anal., 37:1 (2005), 302–320.

    Article  MathSciNet  Google Scholar 

  4. R. M. Garipov, “On the Linear Theory of Gravity Waves: the Theorem of Existence and Uniqueness”, Arch. Ration Mech. Anal., 24 (1967), 352–362.

    Article  MathSciNet  Google Scholar 

  5. S. Yu. Dobrokhotov, “Maslov’s Methods in the Linearized Theory of Gravitational Waves on a Fluid Surface”, Sov. Phys. Dokl., 28 (1983), 229–231.

    ADS  MATH  Google Scholar 

  6. S. Yu. Dobrokhotov and P. N. Zhevandrov, “Nonstandard Characteristics and Maslov’s Operatorial Method in Linear Problems Concerning Unsteady Water Waves”, Func. Anal. Appl., 19 (1985), 285–295.

    Article  Google Scholar 

  7. S. Yu. Dobrokhotov and P. N. Zhevandrov, “Asymptotic Expansions and the Maslov Canonical Operator in the Linear Theory of Water Waves. I. Main Constructions and Equations for Surface Gravity Waves”, Russ. J. Math. Phys., 10:1 (2003), 1–31.

    Article  MathSciNet  Google Scholar 

  8. M. I. Romero Rodríguez and P. Zhevandrov, “Trapped Modes and Resonances for Water Waves over a Slightly Perturbed Bottom”, Russ. J. Math. Phys., 17:3 (2010), 307–327.

    Article  MathSciNet  Google Scholar 

  9. F. Garibay and P. Zhevandrov, “Water Waves Trapped by Thin Submerged Cylinders: Exact Solutions”, Russ. J. Math. Phys., 22:2 (2015), 174–183.

    Article  MathSciNet  Google Scholar 

  10. F. Ursell, “Trapping Modes in the Theory of Surface Waves”, Proc. Cambridge Phil. Soc., 47:2 (1951), 347–358.

    Article  ADS  MathSciNet  Google Scholar 

  11. P. McIver, “Trapping of Surface Water Waves by Fixed Bodies in a Channel”, Quart. J. Mech. Appl. Math., 44:2 (1991), 193–208.

    Article  MathSciNet  Google Scholar 

  12. A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Amer. Math. Soc.: Providence, RI, 1992.

    Book  Google Scholar 

  13. P. McIver and C. M. Linton, Handbook of Mathematical Techniques for Wave/Structure Interaction, Chapman & Hall, Boca Raton, 2001.

    MATH  Google Scholar 

  14. N. G. Kuznetsov, V. G Maz’ya and B. R.Vainberg, Linear Water Waves. A Mathematical Approach, Cambridge University Press, Cambridge, 2002.

    Book  Google Scholar 

  15. J. N.Newman, Marine Hydrodynamics, MIT Press, Cambridge, 1977.

    Book  Google Scholar 

  16. C. M Linton and D. V. Evans, “Integral Equations for a Class of Problems Concerning Obstacles in Waveguides”, J. Fluid Mech., 245 (1992), 349–365.

    Article  ADS  MathSciNet  Google Scholar 

  17. I. G. Petrovsky, Lectures on Partial Differential Equations, Dover, New York, 1991.

    Google Scholar 

  18. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 7th ed., Elsevier, Amsterdam, 2007.

    MATH  Google Scholar 

Download references

Acknowledgments

The first and second authors are grateful to CONACYT-M\(\acute{{\text{e}}}\)xico and CIC- UMSNH, and the third author is grateful to Vicerrector\(\acute{{\text{i}}}\)a de Investigaci\(\acute{{\text{o}}}\)n de la UMNG for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Zhevandrov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhevandrov, P.N., Merzon, A.E. & Romero Rodriguez, M.I. The Dirichlet–Neumann Operator for Oblique Water Waves over a Submerged Thin Cylinder and an Application. Russ. J. Math. Phys. 28, 121–129 (2021). https://doi.org/10.1134/S1061920821010131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920821010131

Navigation