Skip to main content
Log in

Degenerate Zero-Truncated Poisson Random Variables

  • Research Articles
  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

Recently, the degenerate Poisson random variable with parameter \(\alpha > 0\), whose probability mass function is given by \(P_{\lambda}(i) = e_{\lambda}^{-1} (\alpha) \frac{\alpha^{i}}{i!} (1)_{i,\lambda}\) \((i = 0,1,2,\dots)\), was studied. In probability theory, the zero-truncated Poisson distributions are certain discrete probability distributions whose supports are the set of positive integers. These distributions are also known as the conditional Poisson distributions or the positive Poisson distributions. In this paper, we introduce the degenerate zero-truncated Poisson random variables whose probability mass functions are a natural extension of the zero-truncated Poisson distributions, and investigate various properties of those random variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Carlitz,, “Degenerate Stirling, Bernoulli and Eulerian Numbers”, Util. Math., 15 (1979), 51тАУ-88.

    MathSciNet  MATH  Google Scholar 

  2. L. Comtet, “Nombres de Stirling generaux et fonctions symetriques”, C. R. Acad. Sci. Paris. (Series A), 275 (1972), 747–750.

    MATH  Google Scholar 

  3. B. S. El-Desouky,, “A Generalization of Stirling, Lah and Harmonic Numbers with Some Computational Applications”, Ars Combin., 130 (2017), 333–356.

    MathSciNet  MATH  Google Scholar 

  4. B. S. El-Desouky,, “The Multiparameter Non-Central Stirling Numbers”, Fibonacci Quart., 32 (1994), 218–225.

    MathSciNet  MATH  Google Scholar 

  5. W. Feller,, An Introduction to Probability Theory and Its Applications, Vol. II., 2nd ed. John Wiley & Sons, Inc., New York-London-Sydney,, 1971.

    MATH  Google Scholar 

  6. Y. He, J. Pan, “Some Recursion Formulas for the Number of Derangements and Bell Numbers”, J. Math. Res. Appl., 36:1 (2016), 15–22.

    ADS  MathSciNet  MATH  Google Scholar 

  7. F. T. Howard, “Bell Polynomials and Degenerate Stirling Numbers”, Rend. Sem. Mat. Univ. Padova., 61 (1979), 203–219.

    MathSciNet  MATH  Google Scholar 

  8. T. Kim, “\(\lambda\)-Analogue of Stirling Numbers of the First Kind”, Adv. Stud. Contemp. Math. (Kyungshang), 27:3 (2017), 423–429.

    MATH  Google Scholar 

  9. T. Kim, “A Note on Degenerate Stirling Polynomials of the Second Kind”, Proc. Jangjeon Math. Soc., 20:3 (2017), 319–331.

    MathSciNet  MATH  Google Scholar 

  10. T. Kim and D. S. Kim, “Extended Stirling Numbers of the First Kind Associated with Daehee Numbers and Polynomials”, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas: RACSAM, 113:2 (2019), 1159–1171.

    Article  MathSciNet  Google Scholar 

  11. T. Kim, D. S. Kim, L.-C. Jang, and H.-Y. Kim, “A Note on Discrete Degenerate Random Variables”, Proc. Jangjeon Math. Soc., 23:1 (2020), 125–135.

    MathSciNet  Google Scholar 

  12. T. Kim, D. S. Kim, H. Lee, and J. Kwon, “A Note on Some Identities of New Type Degenerate Bell Polynomials”, Mathematics, 7:11 (2019).

    Google Scholar 

  13. T. Kim, Y. Yao, D. S. Kim, and H.-I. Kwon, “Some Identities Involving Special Numbers and Moment of Random Variables”, Rocky Mountain J. Math., 49:2 (2019), 521–538.

    Article  MathSciNet  Google Scholar 

  14. M. Koutras, “Non-Central Stirling Numbers and Some Applications”, Discrete Math., 42 (1982), 73–89.

    Article  MathSciNet  Google Scholar 

  15. A. Leon-Garcia, Probability and Random Processes for Electronical Engineering, 3rd ed., Addition-Wesley, Massachusetts, 2008.

    Google Scholar 

  16. S. Roman, The Umbral Calculus, Pure and Applied Mathematics 111, Academic Press. Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984.

    MATH  Google Scholar 

  17. S. M. Ross, Introduction to Probability Models, 4th ed., Elsevier/Academic Press, Amsterdam, 2014.

    MATH  Google Scholar 

  18. Y. Simsek, “Identities and Relations Related to Combinatorial Numbers and Polynomials”, Proc. Jangjeon Math. Soc., 20:1 (2017), 127–135.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T., Kim, D.S. Degenerate Zero-Truncated Poisson Random Variables. Russ. J. Math. Phys. 28, 66–72 (2021). https://doi.org/10.1134/S1061920821010076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920821010076

Navigation