Skip to main content
Log in

On the Geometry of Slow-Fast Phase Spaces and the Semiclassical Quantization

  • Research Articles
  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

In the context of the averaging method for Poisson and symplectic structures and the theory of Hannay–Berry connections, we discuss some aspects of the semiclassical quantization for a class of slow-fast Hamiltonian systems with two degrees of freedom. For a pseudodifferential Weyl operator with two small parameters corresponding to the semiclassical and adiabatic limits, we show how to construct some series of quasimodes associated to a family of Lagrangian 2-tori which are almost invariant with respect to the classical dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Encyclopedia of Math. Sci., vol.3 (Dynamical Systems III), Springer-Verlag, Berlin-New York, 1988.

    Google Scholar 

  2. M. Avendaño Camacho, M. and Y. M. Vorobiev, “Homological Equations for Tensor Fields and Periodic Averaging”, Russ. J. Math. Phys., 18:3 (2011), 243–257.

    Article  MathSciNet  Google Scholar 

  3. M. Avendaño-Camacho, J. A. Vallejo and Yu. Vorobiev, “Higher Order Corrections to Adiabatic Invariants of Generalized Slow-Fast Hamiltonian Systems”, J. of Math. Phys., 54 (2013), 1–15.

    Article  MathSciNet  Google Scholar 

  4. M. Avendaño-Camacho and Yu. Vorobiev, “Deformations of Poisson Structures on Fibered Manifolds and Adiabatic Slow-Fast Systems”, Int. J. Geom. Methods Mod. Phys., 14:6 (2017).

    Article  MathSciNet  Google Scholar 

  5. M. V. Berry and J. H. Hannay, “Classical Nonadiabatic Angles”, J. Phys. A, 21 (1988), 325–331.

    Article  ADS  MathSciNet  Google Scholar 

  6. R. Cushman, “Normal Form for Hamiltonian Vector Fields with Periodic Flow,” in, Reidel, Dordrecht-Boston, 1984.

    Google Scholar 

  7. R. H. Cushman and L. M. Bates, Global Aspects of Classical Integrable Systems, Birkhäuser Verlag, Berlin, 1997.

    Book  Google Scholar 

  8. D. Chruscinski and A. Jamiolkowski,, “Geometric Phases in Classical and Quantum Mechanics,” Progress in Mathematical Physics, Birkhäuser, Basel, 2004.

    MATH  Google Scholar 

  9. S. Yu. Dobrokhotov, V. E. Nazaikinskii and A. I. Shafarevich, “New Integral Representations of the Maslov Canonical Operator in Singular Charts”, Izvestiya: Mathematics, 81:2 (2017), 95–122.

    MathSciNet  MATH  Google Scholar 

  10. S. Golin, A. Knauf and S. Marmi, “The Hannay Angles: Geometry, Adiabaticity, and an Example”, Commun. Math. Phys., 123 (1989), 95–122.

    Article  ADS  MathSciNet  Google Scholar 

  11. W. Gordon, “On the Relation Between Period and Energy in Periodic Dynamical Systems”, J. Math. Mech., 19 (1969), 111–114.

    MathSciNet  MATH  Google Scholar 

  12. J. H. Hannay, “Angle Variable Holonomy in Adiabatic Excursion of an Integrable Hamiltonian”, J. Phys. A: Math. Gen., 18 (1985), 221–230.

    Article  ADS  MathSciNet  Google Scholar 

  13. R. G. Littlejohn and W. G. Flynn, “Geometric Phases and the Bohr-Sommerfeld Quantization of Multicomponent Wave Fields”, Phys. Rev. Lett., 66:22 (1991), 2839–2842.

    Article  ADS  MathSciNet  Google Scholar 

  14. M. V. Karasev, “New Global Asymptotics and Anomalies in the Problem of Quantization of the Adiabatic Invariant”, Functional Anal. Appl., 24 (1990), 104–114.

    Article  MathSciNet  Google Scholar 

  15. M. V. Karasev, “Simple Quantizations Formula,” in, Birkhauser, Boston, 1991.

    MATH  Google Scholar 

  16. M. V. Karasev, “Connections Over Lagrangian Submanifolds and Certain Problems of Semiclassical Approximation”, J. Sov. Math., 59 (1992), 1053–1062.

    Article  ADS  Google Scholar 

  17. M. V. Karasev, “Contribution to the Symplectic Structure in the Quantization Rule Due to Noncommutativity of Adiabatic Parameters”, Russ. J. Math. Phys., 23:2 (2016), 207–218.

    Article  MathSciNet  Google Scholar 

  18. M. V. Karasev and V. P. Maslov, “Nonlinear Poisson Brackets. Geometry and Quantization,” in, vol. 119, AMS, Providence, 1993.

    MATH  Google Scholar 

  19. V. P. Maslov and M. V. Fedoriuk, Semiclassical Approximation in Quantum Mechanics, Reidel. 1981.

    Book  Google Scholar 

  20. J. E. Marsden, R. Montgomery and T. Ratiu, “Reduction, Symmetry and Phases in Mechanics”, Memoirs of AMS Providence, 88:436 (1990), 1–110.

    MathSciNet  MATH  Google Scholar 

  21. R. Montgomery, “The Connection Whose Holonomy is the Classical Adiabatic Angles of Hannay and Berry and Its Generalization to the Non-Integrable Case”, Commun. Math. Phys., 120 (1988), 269–294.

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Neishtadt, “On the Change in the Adiabatic Invariant on Crossing a Separatrix in Systems with Two Degrees of Freedom”, J. Appl. Math. Mech., 51:5 (1987), 586–592.

    Article  MathSciNet  Google Scholar 

  23. A. Neishtadt, “Averaging Method and Adiabatic Invariants”, Hamiltonian dynamical systems and application, W. Criag ed.,, Springer, Dordrecht, 2008, 53–66.

    Article  MathSciNet  Google Scholar 

  24. S. Teufel, Adiabatic Perturbation Theory in Quantum Dynamics, Springer-Verlag, Berlin Heidelberg, 2003.

    Book  Google Scholar 

  25. Yu. Vorobiev, “Averaging of Poisson Structures”, AIP Conference Proceedings, 1079:1 (2008), 235–240.

    Article  ADS  MathSciNet  Google Scholar 

  26. Yu. M. Vorobiev, “The Averaging in Hamiltonian Systems on Slow-Fast Phase Spaces with \(\mathbb{S}^{1}\)-Symmetry”, Phys. Atom. Nuclei, 74:12 (2011), 1770–1774.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Carlos Villegas Blas for fruitful discussions and comments.

Funding

This research was partially supported by the Mexican National Council of Science and Technology (CONACYT) under the grant CB2015 no. 258302 and the University of Sonora (UNISON) under the project USO no. 315006810.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avendano-Camacho, M., Mamani-Alegria, N. & Vorobiev, Y.M. On the Geometry of Slow-Fast Phase Spaces and the Semiclassical Quantization. Russ. J. Math. Phys. 28, 8–21 (2021). https://doi.org/10.1134/S1061920821010039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920821010039

Navigation