Skip to main content
Log in

On the Ergodic Theory of Equations of Mathematical Physics

  • Research Articles
  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

Linear evolution equations of mathematical physics admitting an invariant in the form of a positive quadratic form are considered. In particular, this includes the string vibration equation, the Liouville kinetic equation, the Maxwell system of equations and the Schrödinger equation. Conditions for the existence of an invariant Gaussian measure are indicated, which makes it possible to apply well-known results of ergodic theory (Poincaré’s recurrence theorem, Birkhoff–Khinchin ergodic theorem, etc.). We discuss the Hamiltonian property of such systems and conditions for their complete integrability. The ergodic properties of Kronecker flows on infinite-dimensional tori are studied. A general theorem on the averaging of quadratic forms is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Kozlov, “Linear-Systems with a Quadratic Integral”, J. Appl. Math. Mech., 56:6 (1992), 803–809.

    Article  MathSciNet  Google Scholar 

  2. V. V. Kozlov, “Quadratic Conservation Laws for Equations of Mathematical Physics”, Russian Math. Surveys, 75:3 (2020), 445–494.

    Article  ADS  MathSciNet  Google Scholar 

  3. V. V. Kozlov, “Linear Hamiltonian Systems: Quadratic Integrals, Singular Subspaces and Stability”, Regul. Chaotic Dyn., 23:1 (2018), 26–46.

    Article  ADS  MathSciNet  Google Scholar 

  4. J. Williamson, “An Algebraic Problem Involving the Involutory Integrals of Linear Dynamical Systems”, Amer. J. Math., 62 (1940), 881–911.

    Article  MathSciNet  Google Scholar 

  5. H. Koçak, “Linear Hamiltonian Systems are Integrable with Quadratics”, J. Math. Phys., 23:12 (1982), 2375–2380.

    Article  ADS  MathSciNet  Google Scholar 

  6. A. B. Zheglov and D. V. Osipov, “On First Integrals of Linear Hamiltonian Systems”, Dokl. Math., 98:3 (2018), 616–618.

    Article  Google Scholar 

  7. A. B. Zheglov and D. V. Osipov, “Lax Pairs for Linear Hamiltonian Systems”, Siberian Math. J., 60:4 (2019), 592–604.

    Article  MathSciNet  Google Scholar 

  8. D. V. Treschev and A. A. Shkalikov, “On the Hamiltonian Property of Linear Dynamical Systems in Hilbert Space”, Math. Notes, 101:6 (2017), 1033–1039.

    Article  MathSciNet  Google Scholar 

  9. V. Volterra, “Sopra una classe di equazioni dinamiche”, Atti Accad. Sci. Torino, 33 (1898), 451–475.

    MATH  Google Scholar 

  10. I. A. Bizyaev and V. V. Kozlov,, “Homogeneous Systems with Quadratic Integrals, Lie-Poisson Quasibrackets, and Kovalevskaya’s Method”, Sb. Math., 206:12 (2015), 1682–1706.

    Article  MathSciNet  Google Scholar 

  11. N. Bourbaki, “Functions of a Real Variable”, Elements of Mathematics, Springer-Verlag, Berlin, 2004.

    Google Scholar 

  12. A. M. Vershik, “Does There Exist a Lebesgue Measure in the Infinite-Dimensional Space?”, Proc. Steklov Inst. Math., 259 (2007), 248–272.

    Article  MathSciNet  Google Scholar 

  13. V. I. Bogachev, Gaussian Measures, Nauka, Fizmatlit, Moscow, 1997 (Russian).

    MATH  Google Scholar 

  14. P. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950.

    Book  Google Scholar 

  15. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, John Wiley & Sons, N.Y., London, Sydney, Toronto, 1974.

    MATH  Google Scholar 

  16. H. Queffélec and M. Queffélec, Diophantine Approximation and Dirichlet Series, Hindustan Book Agency, New Delhi, 2013.

    Book  Google Scholar 

  17. J. von Neumann, “Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik”, Zischr. Phys., 57 (1929), 30–70.

    Article  ADS  Google Scholar 

  18. S. Klimek and A. Leśniewski, “Ergodic Theorems for Quantum Kronecker Flows”, Perspectives of quantization, Amer. Math. Soc., Providence, RI, 1998, 71–80.

    Article  MathSciNet  Google Scholar 

  19. J. C. Oxtoby, “Ergodic Sets”, Bull. Amer. Math. Soc., 58:2 (1952), 116–136.

    Article  MathSciNet  Google Scholar 

  20. V. V. Kozlov, “Weighted Means, Strict Ergodicity, and Uniform Distributions”, Math. Notes, 78:3 (2005), 329–337.

    Article  MathSciNet  Google Scholar 

  21. J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer, Berlin, 1932.

    MATH  Google Scholar 

  22. F. A. Berezin, Lectures on Statistical Mechanics, In-t Komp. Issled., Moscow, Izhevsk, 2002 (Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kozlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, V.V. On the Ergodic Theory of Equations of Mathematical Physics. Russ. J. Math. Phys. 28, 73–83 (2021). https://doi.org/10.1134/S1061920821010088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920821010088

Navigation