Skip to main content
Log in

Antipodal Sets and Designs on Unitary Groups

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The unitary group U(n) is a symmetric space and has the point-symmetry for every point \(x\in U(n)\). A great antipodal set on U(n) is a “good” finite subset of U(n) related to the point-symmetries. On the other hand, a great antipodal set on U(n) is an analogue of a pair of antipodal points on spheres. It is known that a finite subset of a sphere is a tight spherical 1-design if and only if it is a pair of antipodal points. In this paper, we investigate a relation between great antipodal sets on U(n) and design theory on U(n). Moreover, we give a relation between a great antipodal set on U(n) and a Hamming cube graph \({\mathcal {Q}}_n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arvanitoyeorgos, A.: An introduction to Lie groups and the geometry of homogeneous spaces. Student Mathematical Library, vol. 22. American Mathematical Society, Providence, RI (2003). https://doi.org/10.1090/stml/022(Translated from the 1999 Greek original and revised by the author)

  2. Bachoc, C., Bannai, E., Coulangeon, R.: Codes and designs in Grassmannian spaces. Discrete Math. 277(1–3), 15–28 (2004). https://doi.org/10.1016/S0012-365X(03)00151-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Bachoc, C., Coulangeon, R., Nebe, G.: Designs in Grassmannian spaces and lattices. J. Algebraic Comb. 16(1), 5–19 (2002). https://doi.org/10.1023/A:1020826329555

    Article  MathSciNet  MATH  Google Scholar 

  4. Bannai, E., Bannai, E.: A survey on spherical designs and algebraic combinatorics on spheres. Eur. J. Comb. 30(6), 1392–1425 (2009). https://doi.org/10.1016/j.ejc.2008.11.007

    Article  MathSciNet  MATH  Google Scholar 

  5. Bannai, E., Hoggar, S.G.: On tight \(t\)-designs in compact symmetric spaces of rank one. Proc. Jpn. Acad. Ser. A Math. Sci. 61(3), 78–82 (1985)

    Article  MathSciNet  Google Scholar 

  6. Bannai, E., Hoggar, S.G.: Tight \(t\)-designs and squarefree integers. Eur. J. Comb. 10(2), 113–135 (1989). https://doi.org/10.1016/S0195-6698(89)80040-X

    Article  MathSciNet  MATH  Google Scholar 

  7. Bannai, E., Ito, T.: Algebraic Combinatorics. I. The Benjamin/Cummings Publishing Co., Inc., Menlo Park (1984) (Association schemes)

  8. Bannai, E., Navarro, G., Rizo, N., Tiep, P.H.: Unitary \(t\)-groups. J. Math. Soc. Jpn. 72(3), 909–921 (2020). https://doi.org/10.2969/jmsj/82228222

    Article  MathSciNet  MATH  Google Scholar 

  9. Bannai, E., Okuda, T., Tagami, M.: Spherical designs of harmonic index \(t\). J. Approx. Theory 195, 1–18 (2015). https://doi.org/10.1016/j.jat.2014.06.010

    Article  MathSciNet  MATH  Google Scholar 

  10. Bekka, M.B., de la Harpe, P.: Irreducibility of unitary group representations and reproducing kernels Hilbert spaces. Expo. Math. 21(2), 115–149 (2003). https://doi.org/10.1016/S0723-0869(03)80014-2(Appendix by the authors in collaboration with Rostislav Grigorchuk)

  11. Chen, B.Y.: Two-numbers and their applications—a survey. Bull. Belg. Math. Soc. Simon Stevin 25(4), 565–596 (2018)

    Article  MathSciNet  Google Scholar 

  12. Chen, B.Y., Nagano, T.: A Riemannian geometric invariant and its applications to a problem of Borel and Serre. Trans. Am. Math. Soc. 308(1), 273–297 (1988). https://doi.org/10.2307/2000963

    Article  MathSciNet  MATH  Google Scholar 

  13. Delsarte, P.: An algebraic approach to the association schemes of coding theory. PhD Thesis, Philips Res. Rep. Suppl. (10), vi+97 (1973)

  14. Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geometriae Dedicata 6(3), 363–388 (1977). https://doi.org/10.1007/bf03187604

    Article  MathSciNet  MATH  Google Scholar 

  15. Faraut, J., Kaneyuki, S., Korányi, A., Lu, Q.k., Roos, G.: Analysis and Geometry on Complex Homogeneous Domains, Progress in Mathematics, vol. 185. Birkhäuser Boston, Inc., Boston, MA (2000). https://doi.org/10.1007/978-1-4612-1366-6

  16. Hoggar, S.G.: \(t\)-designs in projective spaces. Eur. J. Comb. 3(3), 233–254 (1982). https://doi.org/10.1016/S0195-6698(82)80035-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Hoggar, S.G.: Parameters of \(t\)-designs in \({ F}P^{d-1}\). Eur. J. Comb. 5(1), 29–36 (1984). https://doi.org/10.1016/S0195-6698(84)80015-3

    Article  MathSciNet  MATH  Google Scholar 

  18. Hoggar, S.G.: Tight \(4\)- and \(5\)-designs in projective spaces. Graphs Comb. 5(1), 87–94 (1989). https://doi.org/10.1007/BF01788661

    Article  MathSciNet  MATH  Google Scholar 

  19. Knapp, A.W.: Lie Groups Beyond an Introduction, Progress in Mathematics, 2nd edn, vol. 140. Birkhäuser Boston, Inc., Boston (2002)

  20. Kurihara, H., Okuda, T.: Great antipodal sets on complex Grassmannian manifolds as designs with the smallest cardinalities. J. Algebra 559, 432–466 (2020). https://doi.org/10.1016/j.jalgebra.2020.05.004

    Article  MathSciNet  MATH  Google Scholar 

  21. Lyubich, Y.I.: On tight projective designs. Des. Codes Cryptogr. 51(1), 21–31 (2009). https://doi.org/10.1007/s10623-008-9240-4

    Article  MathSciNet  MATH  Google Scholar 

  22. Myers, S.B., Steenrod, N.E.: The group of isometries of a Riemannian manifold. Ann. Math. 40(2), 400–416 (1939). https://doi.org/10.2307/1968928

    Article  MathSciNet  MATH  Google Scholar 

  23. Nagano, T.: Transformation groups on compact symmetric spaces. Trans. Am. Math. Soc. 118, 428–453 (1965). https://doi.org/10.2307/1993971

    Article  MathSciNet  MATH  Google Scholar 

  24. Nakata, Y., Hirche, C., Morgan, C., Winter, A.: Unitary 2-designs from random \(X\)- and \(Z\)-diagonal unitaries. J. Math. Phys. 58(5), 052203 (2017). https://doi.org/10.1063/1.4983266

    Article  MathSciNet  MATH  Google Scholar 

  25. Roy, A.: Bounds for codes and designs in complex subspaces. J. Algebraic Comb. 31(1), 1–32 (2010). https://doi.org/10.1007/s10801-009-0170-7

    Article  MathSciNet  MATH  Google Scholar 

  26. Roy, A., Scott, A.J.: Unitary designs and codes. Des. Codes Cryptogr. 53(1), 13–31 (2009). https://doi.org/10.1007/s10623-009-9290-2

    Article  MathSciNet  MATH  Google Scholar 

  27. Roy, A., Suda, S.: Complex spherical designs and codes. J. Comb. Des. 22(3), 105–148 (2014). https://doi.org/10.1002/jcd.21379

    Article  MathSciNet  MATH  Google Scholar 

  28. Sagan, B.E.: The symmetric group. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove (1991) (Representations, combinatorial algorithms, and symmetric functions)

  29. Sakai, T.: On cut loci of compact symmetric spaces. Hokkaido Math. J. 6(1), 136–161 (1977). https://doi.org/10.14492/hokmj/1381758555

    Article  MathSciNet  MATH  Google Scholar 

  30. Sánchez, C.U.: The index number of an \(R\)-space: an extension of a result of M. Takeuchi’s. Proc. Am. Math. Soc. 125(3), 893–900 (1997). https://doi.org/10.1090/S0002-9939-97-03517-X

    Article  MathSciNet  MATH  Google Scholar 

  31. Takeuchi, M.: Cell decompositions and Morse equalities on certain symmetric spaces. J. Fac. Sci. Univ. Tokyo Sect. I 12, 81–192 (1965)

    MathSciNet  MATH  Google Scholar 

  32. Takeuchi, M.: Two-number of symmetric \(R\)-spaces. Nagoya Math. J. 115, 43–46 (1989). https://doi.org/10.1017/S0027763000001513

    Article  MathSciNet  MATH  Google Scholar 

  33. Takeuchi, M.: Modern Spherical Functions, Translations of Mathematical Monographs, vol. 135. American Mathematical Society, Providence (1994) (Translated from the 1975 Japanese original by Toshinobu Nagura)

  34. Takeuchi, M., Kobayashi, S.: Minimal imbeddings of \(R\)-spaces. J. Differ. Geom. 2, 203–215 (1968)

    Article  MathSciNet  Google Scholar 

  35. Tanaka, M.S., Tasaki, H.: The intersection of two real forms in Hermitian symmetric spaces of compact type. J. Math. Soc. Jpn. 64(4), 1297–1332 (2012). https://doi.org/10.2969/jmsj/06441297

    Article  MathSciNet  MATH  Google Scholar 

  36. Tanaka, M.S., Tasaki, H.: Antipodal sets of symmetric \(R\)-spaces. Osaka J. Math. 50(1), 161–169 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Tanaka, M.S., Tasaki, H.: The intersection of two real forms in Hermitian symmetric spaces of compact type II. J. Math. Soc. Jpn. 67(1), 275–291 (2015). https://doi.org/10.2969/jmsj/06710275

    Article  MathSciNet  MATH  Google Scholar 

  38. Tanaka, M.S., Tasaki, H.: Maximal antipodal subgroups of some compact classical Lie groups. J. Lie Theory 27(3), 801–829 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Tasaki, H.: Antipodal sets in oriented real Grassmann manifolds. Int. J. Math. 24(8), 1350061 (2013). https://doi.org/10.1142/S0129167X13500614

    Article  MathSciNet  MATH  Google Scholar 

  40. Tasaki, H.: Sequences of maximal antipodal sets of oriented real Grassmann manifolds. In: Real and complex submanifolds, Springer Proceedings of Mathematics Statistics, vol. 106, pp. 515–524. Springer, Tokyo (2014). https://doi.org/10.1007/978-4-431-55215-4_46

  41. Tasaki, H.: Estimates of antipodal sets in oriented real Grassmann manifolds. Int. J. Math. 26(6), 1541008 (2015). https://doi.org/10.1142/S0129167X15410086

    Article  MathSciNet  MATH  Google Scholar 

  42. Tasaki, H.: Sequences of maximal antipodal sets of oriented real Grassmann manifolds II. In: Hermitian–Grassmannian Submanifolds, Springer Proceedings of Mathematics Statistics, vol. 203, pp. 17–26. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5556-0_2

  43. The Sage Developers: SageMath, The Sage Mathematics Software System (Version 9.1) (2020). https://www.sagemath.org

  44. Zhu, H.: Multiqubit Clifford groups are unitary 3-designs. Phys. Rev. A 96(6), 062336 (2017). https://doi.org/10.1103/physreva.96.062336

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Takayuki Okuda and Takahiro Hashinaga for the fruitful discussion. The author also wishes to thank the anonymous referees for careful reading and valuable suggestions that improved the presentation. Eiichi Bannai is a supervisor of the author. The author sincerely congratulate Bannai and Enomoto in their 75th birth-year.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotake Kurihara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by JSPS KAKENHI Grant Number JP16K17604.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurihara, H. Antipodal Sets and Designs on Unitary Groups. Graphs and Combinatorics 37, 1559–1583 (2021). https://doi.org/10.1007/s00373-021-02287-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-021-02287-9

Keywords

Mathematics Subject Classification

Navigation