Skip to main content
Log in

Improved Determination of Strange Distribution Function from the Global Analysis Using BHPS Model

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We study the impact of intrinsic strange (IS) component of nucleon sea on the global analysis of parton distribution functions (PDFs) considering a wide range of experimental data. To this aim, we consider two scenarios on the basis of BHPS model results for the IS distribution. In the first scenario, we apply the results presented through the BHPS model and in the second scenario we use its evolved distributions. For each scenarios, we present the limit of the IS probability \( \mathcal{P}_5^{s\bar{s}} \) for the standard tolerance criteria \( \Delta \chi ^2=1 \) and 18.112 at \( 1\sigma \) and \( 4\sigma \) levels. Our results show that the experimental data can tolerate an IS component with a greater probability \( \mathcal{P}_5^{s\bar{s}} \) if one employs the second scenario. We obtain \( \mathcal{P}_5^{s\bar{s}}\approx 0.01 \) and \( \mathcal{P}_5^{s\bar{s}}\approx 0.025 \) for \( \Delta \chi ^2=1 \) and 18.112, respectively, at the \( 4\sigma \) level. We also calculate the ratio of strange-to-light sea-quark densities \(r_s\) in the proton both including and excluding the IS component. Our results show that one can obtain a higher value for the ratio \(r_s\) if the IS component is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Dulat et al., Phys. Rev. D 93(3), 033006 (2016)

    Article  ADS  Google Scholar 

  2. L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Eur. Phys. J. C 75(5), 204 (2015)

    Article  ADS  Google Scholar 

  3. P. Jimenez-Delgado, E. Reya, Phys. Rev. D 89(7), 074049 (2014)

    Article  ADS  Google Scholar 

  4. H. Abramowicz et al. [H1 and ZEUS Collaborations], Eur. Phys. J. C 75(12), 580 (2015)

  5. S. Alekhin, J. Blümlein, S. Moch, R. Placakyte, Phys. Rev. D 96(1), 014011 (2017)

    Article  ADS  Google Scholar 

  6. S.M. Moosavi Nejad, H. Khanpour, S. Atashbar Tehrani, M. Mahdavi, Phys. Rev. C 94(4), 045201 (2016)

    Article  ADS  Google Scholar 

  7. P. Jimenez-Delgado et al. [Jefferson Lab Angular Momentum (JAM) Collaboration], Constraints on spin-dependent parton distributions at large x from global QCD analysis. Phys. Lett. B 738, 263 (2014)

  8. N. Sato et al. [Jefferson Lab Angular Momentum Collaboration], Phys. Rev. D 93(7), 074005 (2016)

  9. F. Taghavi-Shahri, H. Khanpour, S. Atashbar Tehrani, Z. Alizadeh Yazdi, Phys. Rev. D 93(11), 114024 (2016)

    Article  ADS  Google Scholar 

  10. H. Khanpour, S.T. Monfared, S. Atashbar Tehrani, Phys. Rev. D 95(7), 074006 (2017)

    Article  ADS  Google Scholar 

  11. D. de Florian, R. Sassot, P. Zurita, M. Stratmann, Phys. Rev. D 85, 074028 (2012)

    Article  ADS  Google Scholar 

  12. K. Kovarik et al., Phys. Rev. D 93(8), 085037 (2016)

    Article  ADS  Google Scholar 

  13. K.J. Eskola, P. Paakkinen, H. Paukkunen, C.A. Salgado, Eur. Phys. J. C 77(3), 163 (2017)

    Article  ADS  Google Scholar 

  14. M. Klasen, K. Kovarik, J. Potthoff, Phys. Rev. D 95, 094013 (2017)

    Article  ADS  Google Scholar 

  15. S.M. Moosavi Nejad, M. Soleymaninia, A. Maktoubian, Eur. Phys. J. A 52(10), 316 (2016)

    Article  ADS  Google Scholar 

  16. S.M. Moosavi Nejad, M. Roknabady, M. Delpasand, Nucl. Phys. B 956, 115036 (2020)

    Article  Google Scholar 

  17. M. Delpasand, S M Moosavi. Nejad, Eur. Phys. J. A 56(2), 56 (2020)

    Article  ADS  Google Scholar 

  18. S.M. Moosavi Nejad, M. Balali, Eur. Phys. J. C 76(3), 173 (2016)

    Article  ADS  Google Scholar 

  19. M. Delpasand, S.M. Moosavi Nejad, Phys. Rev. D 99(11), 114028 (2019)

    Article  ADS  Google Scholar 

  20. S.M. Moosavi Nejad, M. Torkian, M. Delpasand, Phys. Rev. D 102(3), 034025 (2020)

    Article  ADS  Google Scholar 

  21. S.M. Moosavi Nejad, Phys. Rev. D 96(11), 114021 (2017)

    Article  ADS  Google Scholar 

  22. M. Soleymaninia, H. Khanpour, S.M. Moosavi Nejad, Phys. Rev. D 97(7), 074014 (2018)

    Article  ADS  Google Scholar 

  23. S.M. Moosavi Nejad, M. Delpasand, Eur. Phys. J. A 539, 174 (2017)

    Article  ADS  Google Scholar 

  24. S.M. Moosavi Nejad, M. Delpasand, Int. J. Mod. Phys. A 30(32), 1550179 (2015)

    Article  Google Scholar 

  25. S.M. Moosavi Nejad, Eur. Phys. J. A 525, 127 (2016)

    Article  ADS  Google Scholar 

  26. M. Constantinou et al., arXiv:2006.08636 [hep-ph]

  27. M. Ding, K. Raya, D. Binosi, L. Chang, C.D. Roberts, S.M. Schmidt, Chin. Phys. C 443, 031002 (2020)

    Article  ADS  Google Scholar 

  28. S. Alekhin et al., Eur. Phys. J. C 75(7), 304 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. V. Bertone et al. [xFitter Developers’ Team], JHEP 1608, 050 (2016)

  30. F. Giuli et al. [xFitter Developers’ Team], Eur. Phys. J. C 77(6), 400 (2017)

  31. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  32. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  33. S.J. Brodsky, P. Hoyer, C. Peterson, N. Sakai, Phys. Lett. 93B, 451 (1980)

    Article  ADS  Google Scholar 

  34. S.J. Brodsky, C. Peterson, N. Sakai, Phys. Rev. D 23, 2745 (1981)

    Article  ADS  Google Scholar 

  35. B.W. Harris, J. Smith, R. Vogt, Nucl. Phys. B 461, 181 (1996)

    Article  ADS  Google Scholar 

  36. J. Pumplin, H.L. Lai, W.K. Tung, Phys. Rev. D 75, 054029 (2007)

    Article  ADS  Google Scholar 

  37. P.M. Nadolsky, H.L. Lai, Q.H. Cao, J. Huston, J. Pumplin, D. Stump, W.K. Tung, C.-P. Yuan, Phys. Rev. D 78, 013004 (2008)

    Article  ADS  Google Scholar 

  38. S. Dulat, T.J. Hou, J. Gao, J. Huston, J. Pumplin, C. Schmidt, D. Stump, C.-P. Yuan, Phys. Rev. D 89(7), 073004 (2014)

    Article  ADS  Google Scholar 

  39. P. Jimenez-Delgado, T.J. Hobbs, J.T. Londergan, W. Melnitchouk, Phys. Rev. Lett. 114(8), 082002 (2015)

    Article  ADS  Google Scholar 

  40. S.J. Brodsky, S. Gardner, Phys. Rev. Lett. 116(1), 019101 (2016)

    Article  ADS  Google Scholar 

  41. T.J. Hou et al., arXiv:1707.00657 [hep-ph]

  42. W.C. Chang, J.C. Peng, Phys. Rev. Lett. 106, 252002 (2011)

    Article  ADS  Google Scholar 

  43. W.C. Chang, J.C. Peng, Phys. Lett. B 704, 197 (2011)

    Article  ADS  Google Scholar 

  44. W.C. Chang, J.C. Peng, Phys. Rev. D 92(5), 054020 (2015)

    Article  ADS  Google Scholar 

  45. M. Salajegheh, Phys. Rev. D 92(7), 074033 (2015)

    Article  ADS  Google Scholar 

  46. C.S. An, B. Saghai, Phys. Rev. D 95(7), 074015 (2017)

    Article  ADS  Google Scholar 

  47. A. Vega, I. Schmidt, T. Gutsche, V.E. Lyubovitskij, Phys. Rev. D 93(5), 056001 (2016)

    Article  ADS  Google Scholar 

  48. A.W. Thomas, Phys. Lett. 126B, 97 (1983)

    Article  ADS  Google Scholar 

  49. A.I. Signal, A.W. Thomas, Phys. Lett. B 191, 205 (1987)

    Article  ADS  Google Scholar 

  50. J. Pumplin, Phys. Rev. D 73, 114015 (2006)

    Article  ADS  Google Scholar 

  51. T.J. Hobbs, J.T. Londergan, W. Melnitchouk, Phys. Rev. D 89(7), 074008 (2014)

    Article  ADS  Google Scholar 

  52. S.J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, R. Vogt, Adv. High Energy Phys. 2015, 231547 (2015)

    Article  Google Scholar 

  53. F. Lyonnet, A. Kusina, T. Jezo, K. Kovarík, F. Olness, I. Schienbein, J.Y. Yu, JHEP 1507, 141 (2015)

    Article  ADS  Google Scholar 

  54. A. Airapetian et al. [HERMES Collaboration], Phys. Lett. B 666, 446 (2008)

  55. M. Mestayer et al. [CLAS Collaboration], Phys. Rev. Lett. 113(15), 152004 (2014)

  56. M. Botje, Comput. Phys. Commun. 182, 490 (2011)

    Article  ADS  Google Scholar 

  57. R.S. Thorne, R.G. Roberts, Phys. Rev. D 57, 6871 (1998)

    Article  ADS  Google Scholar 

  58. J.C. Collins, D.E. Soper, G.F. Sterman, Factorization of hard processes in QCD. Adv. Ser. Direct. High Energy Phys. 5, 1 (1989)

    Article  ADS  MATH  Google Scholar 

  59. C. Adloff et al. [H1 Collaboration], Eur. Phys. J. C 21, 33 (2001)

  60. F.D. Aaron et al. [H1 and ZEUS Collaborations], JHEP 1001, 109 (2010)

  61. F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975)

    Article  ADS  Google Scholar 

  62. J. Pumplin, D. Stump, R. Brock, D. Casey, J. Huston, J. Kalk, H.L. Lai, W.K. Tung, Phys. Rev. D 65, 014013 (2001)

    Article  ADS  Google Scholar 

  63. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, JHEP 0207, 012 (2002)

    Article  ADS  Google Scholar 

  64. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 28, 455 (2003)

    Article  ADS  Google Scholar 

  65. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 35, 325 (2004)

    Article  ADS  Google Scholar 

  66. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009)

    Article  ADS  Google Scholar 

  67. M. Salajegheh, S.M. Moosavi Nejad, M. Nejad, H. Khanpour, S. Atashbar Tehrani, Phys. Rev. C 97(5), 055201 (2018)

    Article  ADS  Google Scholar 

  68. M. Soleymaninia, A.N. Khorramian, S.M. Moosavi Nejad, F. Arbabifar, Phys. Rev. D 88(5), 054019 (2013)

    Article  ADS  Google Scholar 

  69. M. Salajegheh, S.M. Moosavi Nejad, M. Delpasand, Phys. Rev. D 100(11), 114031 (2019)

    Article  ADS  Google Scholar 

  70. M. Salajegheh, S.M. Moosavi Nejad, M. Soleymaninia, H. Khanpour, S. Atashbar Tehrani, Eur. Phys. J. C 79(12), 999 (2019)

    Article  ADS  Google Scholar 

  71. M. Salajegheh, SM Moosavi. Nejad, H. Khanpour, B.A. Kniehl, M. Soleymaninia, Phys. Rev. D 99(11), 114001 (2019)

    Article  ADS  Google Scholar 

  72. SM Moosavi. Nejad, Eur. Phys. J. Plus 133(1), 25 (2018)

    Article  ADS  Google Scholar 

  73. A.C. Benvenuti et al. [BCDMS Collaboration], Phys. Lett. B 223, 485 (1989)

  74. F.D. Aaron et al. [H1 Collaboration], Eur. Phys. J. C 71, 1579 (2011)

  75. F.D. Aaron et al. [H1 Collaboration], Eur. Phys. J. C 65, 89 (2010)

  76. H. Abramowicz et al. [ZEUS Collaboration], JHEP 1409, 127 (2014)

  77. H. Abramowicz et al. [H1 and ZEUS Collaborations], Eur. Phys. J. C 73(2), 2311 (2013)

  78. F.D. Aaron et al. [H1 Collaboration], Eur. Phys. J. C 65, 363 (2010)

  79. A. Aktas et al. [H1 Collaboration], Phys. Lett. B 653, 134 (2007)

  80. F.D. Aaron et al. [H1 Collaboration], Eur. Phys. J. C 67, 1 (2010)

  81. S. Chekanov et al. [ZEUS Collaboration], Phys. Lett. B 547, 164 (2002)

  82. S. Chekanov et al. [ZEUS Collaboration], Nucl. Phys. B 765, 1 (2007)

  83. H. Abramowicz et al. [ZEUS Collaboration], Eur. Phys. J. C 70, 965 (2010)

  84. G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 86, 014022 (2012)

  85. G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 73(8), 2509 (2013)

  86. S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. D 87(11), 112002 (2013) (Erratum: [Phys. Rev. D 87(11), 119902 (2013)])

  87. J. Rojo, Int. J. Mod. Phys. A 30, 1546005 (2015)

    Article  ADS  Google Scholar 

  88. G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 725, 223 (2013)

  89. G. Aad et al. [ATLAS Collaboration], JHEP 1406, 112 (2014)

  90. T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 102, 181801 (2009)

  91. T.A. Aaltonen et al. [CDF Collaboration], Phys. Lett. B 692, 232 (2010)

  92. G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 85, 072004 (2012)

  93. M. Aaboud et al. [ATLAS Collaboration], Eur. Phys. J. C 77(6), 367 (2017)

  94. P. Jimenez-Delgado, T.J. Hobbs, J.T. Londergan, W. Melnitchouk, Phys. Rev. Lett. 116(1), 019102 (2016)

    Article  ADS  Google Scholar 

  95. A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M. Schönherr, G. Watt, Eur. Phys. J. C 75, 132 (2015)

    Article  ADS  Google Scholar 

  96. D. Mason et al. [NuTeV Collaboration], Phys. Rev. Lett. 99, 192001 (2007)

  97. A. Kayis-Topaksu et al., New J. Phys. 13, 093002 (2011)

    Article  ADS  Google Scholar 

  98. O. Samoylov et al. [NOMAD Collaboration], Nucl. Phys. B 876, 339 (2013)

  99. M. Goncharov et al. [NuTeV Collaboration], Phys. Rev. D 64, 112006 (2001)

  100. S. Alekhin, J. Blumlein, L. Caminadac, K. Lipka, K. Lohwasser, S. Moch, R. Petti, R. Placakyte, Phys. Rev. D 91(9), 094002 (2015)

    Article  ADS  Google Scholar 

  101. G. Aad et al. [ATLAS Collaboration], Phys. Rev. Lett. 109, 012001 (2012)

  102. G. Aad et al. [ATLAS Collaboration], JHEP 1405, 068 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohammad Moosavi Nejad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The extracted PDF Sets

Appendix: The extracted PDF Sets

For further studies on the impact of IS distributions on the physical observables, it is important to have the PDF sets including the contribution of IS component. Then, we have provided the results of our global PDF analysis in the LHAPDF6 format, including the basic analysis (where the contribution of an IS component is ignored) and the analysis of scenario II considering an IS component with the probabilities \(1\%\) and \(2.5\%\). The grid files can be obtained via email from the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salajegheh, M., Moosavi Nejad, S.M. & Atashbar Tehrani, S. Improved Determination of Strange Distribution Function from the Global Analysis Using BHPS Model. Few-Body Syst 62, 16 (2021). https://doi.org/10.1007/s00601-021-01601-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01601-8

Navigation