Skip to main content
Log in

A realisation of the Bershadsky–Polyakov algebras and their relaxed modules

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a realisation of the universal/simple Bershadsky–Polyakov vertex algebras as subalgebras of the tensor product of the universal/simple Zamolodchikov vertex algebras and an isotropic lattice vertex algebra. This generalises the realisation of the universal/simple affine vertex algebras associated to \(\mathfrak {sl}_{2}\) and \(\mathfrak {osp} (1 \vert 2)\) given in Adamović (Commun Math Phys 366:1025–1067, 2019). Relaxed highest-weight modules are likewise constructed, conditions for their irreducibility are established, and their characters are explicitly computed, generalising the character formulae of Kawasetsu and Ridout (Commun Math Phys 368:627–663, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamović, D.: Lie superalgebras and irreducibility of \(A_1^{(1)}\)-modules at the critical level. Commun. Math. Phys. 270, 141–161 (2007)

    Article  ADS  MATH  Google Scholar 

  2. Adamović, D.: Realizations of simple affine vertex algebras and their modules: the cases \(\widehat{sl(2)}\) and \(\widehat{osp(1,2)}\). Commun. Math. Phys. 366, 1025–1067 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Adamović, D., Pedić, V.: On fusion rules and intertwining operators for the Weyl vertex algebra. J. Math. Phys. 60, 081701 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Adamović, D, Creutzig, T., Genra, N.: On realizations of \(L_k(sl(3))\)-modules. In preparation

  5. Adamović, D., Kac, V., Möseneder Frajria, P., Papi, P., Perše, O.: Conformal embeddings of affine vertex algebras in minimal W-algebras I: structural results. J. Algebra 500, 117–152 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Adamović, D., Kontrec, A.: Classification of irreducible modules for Bershadsky-Polyakov algebra at certain levels. J. Algebra Appl. 20, 2150102 (2021)

    Article  Google Scholar 

  7. Adamović, D., Kawasetsu, K., Ridout, D.: In preparation

  8. Adamović, D., Milas, A.: Vertex operator algebras associated to modular invariant representations of \(A_1^{\left(1\right)}\). Math. Res. Lett. 2, 563–575 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Arakawa, T.: Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture. Duke Math. J. 130, 435–478 (2005). arXiv:math-ph/0405015

    Article  MathSciNet  MATH  Google Scholar 

  10. Arakawa, T.: \(W\)-algebras at the critical level. Commun. Math. Phys. 565, 1–14 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Arakawa, T.: Rationality of Bershadsky-Polyakov vertex algebras. Commun. Math. Phys. 323, 627–633 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Arakawa, T.: Associated varieties of modules over Kac-Moody algebras and \(C_2\)-cofiniteness of W-algebras. Int. Math. Res. Not. 11605–11666, 2015 (2015)

    MATH  Google Scholar 

  13. Arakawa, T.: Rationality of W-algebras: principal nilpotent cases. Ann. Math. 182, 565–604 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Arakawa, T.: Rationality of admissible affine vertex algebras in the category O. Duke Math. J. 165, 67–93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Arakawa, T., Creutzig, T., Linshaw, A.: W-algebras as coset vertex algebras. Invent. Math. 218, 145–195 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Arakawa, T., Futorny, V., Ramirez, L.-E.: Weight representations of admissible affine vertex algebras. Commun. Math. Phys. 353, 1151–1178 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Arakawa, T., van Ekeren, J.: Rationality and fusion rules of exceptional W-algebras. arXiv:1905.11473 [math.RT]

  18. Berman, S., Dong, C., Tan, S.: Representations of a class of lattice type vertex algebras. J. Pure Appl. Algebra 176, 27–47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bershadsky, M.: Conformal field theories via Hamiltonian reduction. Commun. Math. Phys. 139, 71–82 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Creutzig, T., Kanade, S., Linshaw, A., Ridout, D.: Schur-Weyl duality for Heisenberg cosets. Transform. Groups 24, 301–354 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Creutzig, T., Kanade, S., Liu, T., Ridout, D.: Cosets, characters and fusion for admissible-level \(\mathfrak{osp}(1\vert 2)\) minimal models. Nucl. Phys. B 938, 22–55 (2018). arXiv:1806.09146 [hep-th]

    Article  ADS  MATH  Google Scholar 

  22. Creutzig, T., Liu, T., Ridout, D., Wood, S.: Unitary and non-unitary \(N=2\) minimal models. J. High Energy Phys. 1906, 024 (2019). arXiv:1902.08370 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Creutzig, T., Ridout, D.: Admissible-level representations of the affine vertex operator superalgebras of \({\mathfrak{sl}} (2\vert 1)\). In preparation

  24. Creutzig, T., Ridout, D.: Modular data and Verlinde formulae for fractional level WZW models II. Nucl. Phys. B 875, 423–458 (2013). arXiv:1306.4388 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Creutzig, T., Ridout, D., Wood, S.: Coset constructions of logarithmic \(\left(1, p \right)\)-models. Lett. Math. Phys. 104, 553–583 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Elashvili, A., Kac, V., Vinberg, E.: On exceptional nilpotents in semisimple Lie algebras. J. Lie Theory 19, 371–390 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Fehily, Z., Kawasetsu, K., Ridout, D.: Classifying relaxed highest-weight modules for admissible-level Bershadsky–Polyakov algebras. Commun. Math. Phys., to appear. arXiv:2007.03917 [math.RT]

  28. Feigin, B., Frenkel, E.: Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras. Int. J. Mod. Phys. 7, 197–215 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Feigin, B., Semikhatov, A., Tipunin, I.: Equivalence between chain categories of representations of affine \(sl \left(2 \right)\) and \(N = 2\) superconformal algebras. J. Math. Phys. 39, 3865–3905 (1998). arXiv:hep-th/9701043

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves. Mathematical Surveys and Monographs, vol. 88. American Mathematical Society, Providence (2001)

  31. Futorny, V., Křižka, L.: Positive energy representations of affine vertex algebras. arXiv:2002.05586 [math.RT]

  32. Futorny, V., Morales, O., Ramirez, L.: Simple modules for affine vertex algebras in the minimal nilpotent orbit. arXiv:2002.05568 [math.RT]

  33. Genra, N., Kuwabara, T.: Strong generators of the subregular \(\cal{W}\)-algebra \(\cal{W}^{KN}(sl(N),f_{sub})\) and combinatorial description at critical level. Lett. Math. Phys. 110, 21–41 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Gorelik, M., Kac, V.: On simplicity of vacuum modules. Adv. Math. 211, 621–677 (2007). arXiv:math-ph/0606002

    Article  MathSciNet  MATH  Google Scholar 

  35. Kac, V., Roan, S., Wakimoto, M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241, 307–342 (2003). arXiv:math-ph/0302015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Kac, V., Wakimoto, M.: Quantum reduction and representation theory of superconformal algebras. Adv. Math. 185, 400–458 (2004). arXiv:math-ph/0304011

    Article  MathSciNet  MATH  Google Scholar 

  37. Kac, V., Wakimoto, M.: On rationality of W-algebras. Transform. Groups 13, 671–713 (2008). arXiv:0711.2296 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  38. Kawasetsu, K., Ridout, D.: Relaxed highest-weight modules II: classifications for affine vertex algebras. arXiv:1906.02935 [math.RT] (to appear in Commun. Contemp. Math.)

  39. Kawasetsu, K., Ridout, D.: Relaxed highest-weight modules I: rank \(1\) cases. Commun. Math. Phys. 368, 627–663 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Kawasetsu, K., Ridout, D., Wood, S.: An admissible-level \({\mathfrak{sl}}_3\) model. In preparation

  41. Li, H.: Representation theory and tensor product theory for vertex operator algebras. PhD thesis, Rutgers University, (1994). arXiv:hep-th/9406211

  42. Li, H.: The physics superselection principle in vertex operator algebra theory. J. Algebra 196, 436–457 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Morgan, S.: Quantum hamiltonian reduction of W-algebras and category \({\cal O\it }\). PhD thesis, University of Toronto, (2014). arXiv:1502.07025 [math.RT]

  44. Polyakov, A.: Gauge transformations and diffeomorphisms. Int. J. Mod. Phys. A 5, 833–842 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Ridout, D., Snadden, J., Wood, S.: An admissible level \(\widehat{\mathfrak{osp}} \left(1 \vert 2 \right)\)-model: modular transformations and the Verlinde formula. Lett. Math. Phys. 108, 2363–2423 (2018). arXiv:1705.04006 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Ridout, D., Wood, S.: Bosonic ghosts at \(c=2\) as a logarithmic CFT. Lett. Math. Phys. 105, 279–307 (2015). arXiv:1408.4185 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Ridout, D., Wood, S.: Relaxed singular vectors, Jack symmetric functions and fractional level \(\widehat{\mathfrak{sl}} \left(2 \right)\) models. Nucl. Phys. B 894, 621–664 (2015). arXiv:1501.07318 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Semikhatov, A.: Inverting the Hamiltonian reduction in string theory. In 28th International Symposium on Particle Theory, Wendisch-Rietz, Germany, pp. 156–167, (1994). arXiv:hep-th/9410109

  49. Thielemans, K.: A mathematica package for computing operator product expansions. Int. J. Mod. Phys. C 2, 787–798 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Watts, G.: \(W\)-algebras and their representations. Conformal Field Theories and Integrable Models (Budapest. 1996). Lecture Notes in Physics, vol. 498, pp. 55–84. Springer, Berlin (1997)

    Chapter  Google Scholar 

  51. Wood, S.: Admissible level \(\mathfrak{osp} (1|2)\) minimal models and their relaxed highest weight modules. Transform. Groups 25, 887–943 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zamolodchikov, A.: Infinite additional symmetries in two-dimensional conformal quantum field theory. Theoret. Math. Phys. 65, 1205–1213 (1985)

    Article  Google Scholar 

  53. Zamolodchikov, A., Fateev, V.: Disorder fields in two-dimensional conformal quantum field theory and \(N=2\) extended supersymmetry. Soviet Phys. JETP 63, 913–919 (1986)

    Google Scholar 

  54. Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9, 237–302 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Thomas Creutzig and Zac Fehily for discussions relating to the results presented here. D.A. is partially supported by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004). KK’s research is partially supported by MEXT Japan “Leading Initiative for Excellent Young Researchers (LEADER)”, JSPS Kakenhi Grant numbers 19KK0065 and 19J01093 and Australian Research Council Discovery Project DP160101520. DR’s research is supported by the Australian Research Council Discovery Project DP160101520 and the Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers CE140100049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Kawasetsu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamović, D., Kawasetsu, K. & Ridout, D. A realisation of the Bershadsky–Polyakov algebras and their relaxed modules. Lett Math Phys 111, 38 (2021). https://doi.org/10.1007/s11005-021-01378-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01378-1

Keywords

Mathematics Subject Classification

Navigation