Skip to main content
Log in

Local Moderate and Precise Large Deviations via Cluster Expansions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a system of classical particles confined in a box \(\varLambda \subset {\mathbb {R}}^d\) with zero boundary conditions interacting via a stable and regular pair potential. Based on the validity of the cluster expansion for the canonical partition function in the high temperature–low density regime we prove moderate and precise large deviations from the mean value of the number of particles with respect to the grand-canonical Gibbs measure. In this way we have a direct method of computing both the exponential rate as well as the pre-factor and obtain explicit error terms. Estimates comparing with the infinite volume versions of the above are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bringmann, K., Folsom, A., Milas, A.: Asymptotic behavior of partial and false theta functions arising from jacobi forms and regularized characters. J. Math. Phys. 58(1), 011702 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  2. Cancrini, N., Olla, S.: Ensemble dependence of fluctuations: canonical microcanonical equivalence of ensembles. J. Stat. Phys. 168(4), 707–730 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  3. De Masi, A., Presutti, E., Spohn, H., Wick, W.D., et al.: Asymptotic equivalence of fluctuation fields for reversible exclusion processes with speed change. Ann. Probab. 14(2), 409–423 (1986)

    Article  MathSciNet  Google Scholar 

  4. Del Grosso, G.: On the local central limit theorem for gibbs processes. Commun. Math. Phys. 37(2), 141–160 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  5. Den Hollander, F.: Large Deviations, vol. 14. American Mathematical Soc, Providence, RI (2008)

    MATH  Google Scholar 

  6. Dobrushin, R.L., Shlosman, S.: Large and moderate deviations in the ising model. Adv. Soviet Math. 20, 91–219 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Springer, New York (2007)

    Google Scholar 

  8. Georgii, H.-O.: Large deviations and the equivalence of ensembles for gibbsian particle systems with superstable interaction. Probab. Theory Relat. Fields 99(2), 171–195 (1994)

    Article  MathSciNet  Google Scholar 

  9. Jameson, G.J.O.: A simple proof of stirling’s formula for the gamma function. Math. Gazette 99(544), 68–74 (2015)

    Article  MathSciNet  Google Scholar 

  10. Jansen, S., Kuna, T., Tsagkarogiannis, D.: Virial inversion and density functionals. arXiv preprint arXiv:1906.02322 (2019)

  11. Lanford, O.E.: Entropy and equilibrium states in classical statistical mechanics. In: Statistical Mechanics and Mathematical Problems, pp. 1–113. Springer (1973)

  12. Mayer, J.E., Mayer, M.G.: Statistical Mechanics. Wiley, New York (1940)

    MATH  Google Scholar 

  13. Poghosyan, S., Ueltschi, D.: Abstract cluster expansion with applications to statistical mechanical systems. J. Math. Phys. 50(5), 053509 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. Pulvirenti, E., Tsagkarogiannis, D.: Cluster expansion in the canonical ensemble. Commun. Math. Phys. 316(2), 289–306 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  15. Pulvirenti, E., Tsagkarogiannis, D.: Finite volume corrections and decay of correlations in the canonical ensemble. J. Stat. Phys. 159(5), 1017–1039 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Dimitrios Tsagkarogiannis for his patient supervision during the preparation of this paper. I would also like to thank Errico Presutti and Sabine Jansen for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Scola.

Additional information

Communicated by Alessandro Giuliani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Canonical Cluster Expansion

Here we give some details about the cluster expansion needed for the proof of (5.17). We follow the results from [14] to which we refer for a more detailed description.

An abstract polymer model \(({\mathcal {V}},{\mathbb {G}}_{{\mathcal {V}}},\omega )\) consists of (i) a set of polymers \({\mathcal {V}}:=\{V_1,\ldots ,V_{|{\mathcal {V}}|}\}\), (ii) a binary symmetric relation \(\sim \) of compatibility on \({\mathcal {V}}\times {\mathcal {V}}\) such that for all \(i\ne j\), \(V_i\sim V_j\) if and only if \(V_i\cap V_j=\emptyset \), (iii) a graph \({\mathbb {G}}_{{\mathcal {V}}}\equiv (V({\mathbb {G}}_{{\mathcal {V}}}),E({\mathbb {G}}_{{\mathcal {V}}}))\) such that the vertex set \(V({\mathbb {G}}_{{\mathcal {V}}})={\mathcal {V}}\) and an edge \(\{i,j\}\in E({\mathbb {G}}_{{\mathcal {V}}})\) if and only if \(V_i\not \sim V_j\) and (iv) a weight function \(\omega :{\mathcal {V}}\rightarrow {\mathbb {C}}\). Then defining for all \(N\in {\mathbb {N}}\)

$$\begin{aligned} {\mathcal {V}}\equiv {\mathcal {V}}(N):=\{V\,:\,V\subset \{1,\ldots ,N\},\,|V|\ge 2\} \end{aligned}$$
(A.1)

and

$$\begin{aligned} \omega \equiv \omega _{\varLambda }(V):=\sum _{g\in {\mathcal {C}}_V}\int _{\varLambda ^{|V|}}\prod _{i\in V(g)}\frac{dq_i}{|\varLambda |}\prod _{\{i,j\}\in E(g)}f_{i,j} \end{aligned}$$
(A.2)

with \(f_{i,j}:=e^{-\beta V(q_i,q_j)}-1\), we have that thanks to [14]

$$\begin{aligned} \frac{N}{|\varLambda |}\sum _{n\ge 1}\frac{1}{n+1}P_{N,|\varLambda |}(n)B_{\varLambda ,\beta }(n)=\frac{1}{|\varLambda |}\sum _{I\in {\mathcal {I}}}c_I\omega _{\varLambda }^I, \end{aligned}$$
(A.3)

where

$$\begin{aligned} c_I=\frac{1}{I!}\sum _{G\subset {\mathcal {G}}_I}(-1)^{|E(G)|}=\frac{1}{I!}\frac{\partial ^{\sum _{V}I(V)}\log Z_{{\mathcal {V}}(N),\omega _{\varLambda }}}{\partial ^{I(V_1)}\omega _{\varLambda }(V_1)\cdot \cdot \cdot \partial ^{I(V_n)}\omega _{\varLambda }(V_n)}\bigg |_{\omega _{\varLambda }(V)=0} \end{aligned}$$
(A.4)

with

$$\begin{aligned} Z_{{\mathcal {V}}(N),\omega _{\varLambda }}:=\sum _{\{V_1,\ldots ,V_n\}_{\sim }}\prod _{i=1}^n\omega _{\varLambda }(V_i)=\int _{\varLambda ^N}\prod _{i=1}^N\frac{dq_i}{|\varLambda |}\,e^{-\beta H^{{\mathbf {0}}}_{\varLambda }({\mathbf {q}})}. \end{aligned}$$
(A.5)

The second sum in (A.3) is over the set \({\mathcal {I}}\) of multi-indices \(I:{\mathcal {V}}(N)\rightarrow \{0,1,\ldots \}\), \(\omega _{\varLambda }^{I}=\prod _{V}\omega _{\varLambda }(V)^{I(V)}\), and, denoting \(\mathrm {supp}I:=\{V\in {\mathcal {V}}(N)\,:\, I(V)>0\}\), \({\mathcal {G}}_{I}\) is the graph with \(\sum _{V\in \mathrm {supp}I}I(V)\) vertices induced from \({\mathcal {G}}_{\mathrm {supp}I}\subset {\mathbb {G}}_{{\mathcal {V}}(N)}\) by replacing each vertex V by the complete graph on I(V) vertices.

Furthermore, the sum in (A.4) is over all connected graphs G of \({\mathcal {G}}_I\) spanning the whole set of vertices of \({\mathcal {G}}_I\) and \(I!=\prod _{V\in \mathrm {supp}I}I(V)!\).

Denoting now with \([N]\equiv \{1,\ldots ,N\}\) and \(A(I):=\bigcup _{V\in \mathrm {supp}I}V\subset [N]\), from (A.3) we have that

$$\begin{aligned} B_{\beta ,\varLambda }(n)=\frac{|\varLambda |^n}{n!}\sum _{I\,:\,A(I)=[n+1]}c_I\omega _{\varLambda }^I. \end{aligned}$$
(A.6)

We want to recall that \(B_{\varLambda ,\beta }(n)\) is the finite volume version of the irreducible Mayer’s coefficient \(\beta _n\) in the sense that

$$\begin{aligned} \lim _{\varLambda \rightarrow {\mathbb {R}}^d}B_{\varLambda ,\beta }(n)=\beta _n, \end{aligned}$$
(A.7)

where

$$\begin{aligned} \beta _n:=\frac{1}{n!}\sum _{\begin{array}{c} g\in {\mathcal {B}}_{n+1}\\ V(g)\ni 1 \end{array}}\int _{({\mathbb {R}}^d)^n}\prod _{\{i,j\}\in E(g)}(e^{-\beta V(x_i-x_j)}-1)dx_2\cdot \cdot \cdot dx_n,\,\,x_1\equiv 0. \end{aligned}$$
(A.8)

Here \({\mathcal {B}}_{n+1}\) is the set of the 2-connected graphs and, for all \(g\in {\mathcal {B}}_{n+1}\), we denote with V(g) the set of its vertices.

Using this formalization, thanks to [15] and also assuming in order to simplify the calculation that

Assumption 3

\(V:\mathbb {R}^d\rightarrow {\mathbb {R}}\cup \{\infty \}\) has compact support \(R<l\), i.e.

$$\begin{aligned} V(x_i-x_j)=0\,\,\,\mathrm {if}\,\,\,|x_i-x_j|>R, \end{aligned}$$
(A.9)

for all \(x_i,x_j\in {\mathbb {R}}^d\), we have:

Lemma 5

Let \(\rho ^*_{\varLambda }\) as in (4.23) such that condition \((\star )\) holds and \(\rho _0\) as in (4.21). It results:

$$\begin{aligned} \beta \left| f^{(m)}_{\beta }(\rho _0)-{\mathcal {F}}_{\varLambda ,\beta ,{\mathbf {0}}}^{(m)}(\rho ^*_{\varLambda })\right| \lesssim \frac{|\partial \varLambda |}{|\varLambda |}, \end{aligned}$$
(A.10)

for all \(m\ge 0\).

Proof

Let us consider for first the case \(m\ge 1\). We define

$$\begin{aligned} \omega ^{(m)}_{\varLambda }(V):=2\rho _{\varLambda }^{1-m}{{|V|+1}\atopwithdelims ()m}\sum _{g\in {\mathcal {C}}_{V}}\int _{\varLambda ^{|V|}}\prod _{i=1}^{|V|}\frac{dq_i}{|\varLambda |}\prod _{\{i,j\}\in E(g)} f_{i,j} \prod _{i=1}^{|V|}F_{q_i}(\epsilon ) \end{aligned}$$
(A.11)

where

$$\begin{aligned} F_{q}(\epsilon ):=(1-\epsilon ){\mathbf {1}}_{\{d(q,\varLambda ^c)< R|V|\}}+\epsilon \,{\mathbf {1}}_{\{d(q,\varLambda ^c)\ge R|V|\}}, \end{aligned}$$
(A.12)

Then, calling \(n=|V|\) and using the same estimates of (4.18)–(4.20) of [15] we obtain

$$\begin{aligned} |\omega _{\varLambda }^{(m)}(V)|\le \rho _{\varLambda }^{1-m}\frac{2}{m!}\frac{e^{2\beta B}(n+1)^m}{n}\left[ e^{2\beta B}C(\beta ,R)\rho _{\varLambda }\right] ^{n-1} \end{aligned}$$
(A.13)

far from the boundary (\(\epsilon =1\)), and

$$\begin{aligned} |\omega _{\varLambda }^{(m)}(V)|\le \rho _{\varLambda }^{1-m}\frac{2}{m!}\frac{e^{2\beta B}(n+1)^m}{n}\left[ e^{2\beta B}C(\beta ,R)\rho _{\varLambda }\right] ^{n-1}\frac{dR}{l} \end{aligned}$$
(A.14)

near the boundary (\(\epsilon =0\)). Noting that \(|\omega ^{(m)}_{\varLambda }(V)|\) is an upper bound for the \(n^{th}\) term of \(\mathcal {F}^{int,(m)}_{\varLambda ,\beta ,\mathbf {0}}\) (see (6.7) and (6.8)) and revisiting sections 4, 5 and 6 of [15] we have

$$\begin{aligned} \beta \bigg |f_{\beta }^{(m)}(\rho ^*_{\varLambda })-{\mathcal {F}}_{\varLambda ,\beta ,{\mathbf {0}}}^{(m)}(\rho ^*_{\varLambda })\bigg |\lesssim \frac{|\partial \varLambda |}{|\varLambda |}. \end{aligned}$$
(A.15)

The conclusion follows (also when \(m=0\)) from the fact that by construction \(|\rho ^*_{\varLambda }-\rho _{0}|\lesssim |\partial \varLambda |/|\varLambda |\) (see also [3]) and from the exponential decay of \(F_{\varLambda ,\beta ,N}(n)\) given in (2.25). Indeed from (2.10), (2.23) and (2.21)–(A.8) we have

$$\begin{aligned} \beta f_{\beta }^{(m)}(\rho _0)=\frac{d^m}{d\rho ^m}\rho (\log \rho -1)\bigg |_{\rho =\rho _0}+\sum _{n\ge 1}{n+1\atopwithdelims ()m}\rho _0^{n+1-m}\frac{\beta _n}{n+1}. \end{aligned}$$
(A.16)

The first term gives

$$\begin{aligned}&\frac{d^m}{d\rho ^m}\rho (\log \rho -1)\bigg |_{\rho =\rho _0}\nonumber \\&\quad =(-1)^m\frac{1}{\rho _0^{m-1}}=(-1)^m\left( \frac{1}{(\rho ^*_{\varLambda })^{m-1}}+\frac{\sum _{k=1}^{m-1}{m-1\atopwithdelims ()k}(\rho ^*_{\varLambda })^{m-k}(\rho _0-\rho ^*_{\varLambda })^k}{(\rho _0\rho ^*_{\varLambda })^{m-1}}\right) \qquad \end{aligned}$$
(A.17)

for all \(m\ge 2\). In the above formula, the first term cancels with the corresponding in \(f_{\beta }^{(m)}(\rho ^*_{\varLambda })\) while the second is bounded by \(|\partial \varLambda |/|\varLambda |\). For the second term in (A.16) we have:

$$\begin{aligned} \begin{aligned}&\sum _{n\ge 1}{n+1\atopwithdelims ()m}\rho _0^{n+1-m}\frac{\beta _n}{n+1}=\sum _{n\ge 1}{n+1\atopwithdelims ()m}(\rho _0\pm \rho ^*_{\varLambda })^{n+1-m}\frac{\beta _n}{n+1} \\&\quad \,=\sum _{n\ge 1}{n+1\atopwithdelims ()m}\left[ \sum _{k=0}^{n+1-m}{n+1-m\atopwithdelims ()k}(\rho _0-\rho ^*_{\varLambda })^{n+1-m-k}(\rho ^*_{\varLambda })^k\right] \frac{\beta _n}{n+1} \\&\quad \,=\sum _{n\ge 1}{n+1\atopwithdelims ()m}(\rho ^*_{\varLambda })^{n+1-m}\frac{\beta _n}{n+1}+\sum _{n\ge 1}{n+1\atopwithdelims ()m}\sum _{k=0}^{n -m}\bigg [{n+1-m\atopwithdelims ()k} \\&\qquad \times (\rho _0-\rho ^*_{\varLambda })^{n+1-m-k}(\rho ^*_{\varLambda })^k\bigg ]\frac{\beta _n}{n+1}, \end{aligned} \end{aligned}$$
(A.18)

where

$$\begin{aligned} \begin{aligned}&\sum _{k=0}^{n-m}\left[ {n+1-m\atopwithdelims ()k}(\rho _0-\rho ^*_{\varLambda })^{n+1-m-k}(\rho ^*_{\varLambda })^k\right] \frac{\beta _n}{n+1} \\&\quad \le \frac{\rho ^*_{\varLambda }}{2^m}\frac{|\partial \varLambda |}{|\varLambda |}\sum _{n\ge 1}(n+1)^m\left( \frac{2}{\rho ^*_{\varLambda }}\right) ^n\left| \frac{\rho ^*_{\varLambda }}{n+1}\beta _n\right| \le \frac{\rho ^*_{\varLambda }}{2^m}\frac{|\partial \varLambda |}{|\varLambda |}\sum _{n\ge 1}\left( \frac{2}{\rho ^*_{\varLambda } e^c}\right) ^n\lesssim \frac{|\partial \varLambda |}{|\varLambda |}. \end{aligned}\nonumber \\ \end{aligned}$$
(A.19)

which concludes the proof. \(\square \)

Remark 6

From (4.21), i.e. the fact that \(|\rho _0-{\bar{\rho }}_{\varLambda }|\lesssim |\partial \varLambda |/|\varLambda |\) with \({\bar{\rho }}_{\varLambda }\) given by (2.17), the previous Lemma is also valid if we consider \({\bar{\rho }}_{\varLambda }\) instead of \(\rho ^*_{\varLambda }\).

Stirling’s Approximation

We recall Stirling’s formula: for \(N\in {\mathbb {N}}\) large enough

$$\begin{aligned} \sqrt{2\pi N}\left( \frac{N}{e}\right) ^N\le N!\le e^{1/12N}\sqrt{2\pi N}\left( \frac{N}{e}\right) ^N. \end{aligned}$$
(B.1)

Using (2.6), (2.23) and (2.26), for \(\rho _{\varLambda }=N/|\varLambda |\in (0,1)\) we have:

$$\begin{aligned} \beta [f_{\varLambda ,\beta ,{\mathbf {0}}}(N)-{\mathcal {F}}_{\varLambda ,\beta ,{\mathbf {0}}}(\rho _{\varLambda })]= & {} -\frac{1}{|\varLambda |}\log \frac{|\varLambda |^{\rho _{\varLambda }|\varLambda |}}{(\rho _{\varLambda }|\varLambda |)!}-\rho _{\varLambda }(\log \rho _{\varLambda }-1)\nonumber \\= & {} \frac{1}{|\varLambda |}\log \left[ (\rho _{\varLambda }|\varLambda |)!\left( \frac{e}{\rho _{\varLambda }|\varLambda |}\right) ^{\rho _{\varLambda }|\varLambda |}\right] \nonumber \\=: & {} \rho _{\varLambda }B_{|\varLambda |}(\rho _{\varLambda }|\varLambda |) =: S_{|\varLambda |}(\rho _{\varLambda }). \end{aligned}$$
(B.2)

Thus, from (B.1), we get

$$\begin{aligned} \frac{\log \sqrt{2\pi \rho _{\varLambda }|\varLambda |}}{|\varLambda |}\le S_{|\varLambda |}(\rho _{\varLambda })\le \frac{\log \sqrt{2\pi \rho _{\varLambda }|\varLambda |}}{|\varLambda |}+\frac{1}{12\rho _{\varLambda }|\varLambda |^2}. \end{aligned}$$
(B.3)

We can generalize the first quantity defined in (B.2) as follows

$$\begin{aligned} B(x)=\frac{1}{x}\log \left[ \varGamma (x+1)\left( \frac{x}{e}\right) ^{-x}\right] \end{aligned}$$
(B.4)

for all \(x\in {\mathbb {R}}^+\) and where \(\varGamma (\cdot )\) is the gamma function \(\varGamma (x):=\int _{0}^{\infty }t^{x-1}e^{-t}dt\) with the following properties [9]:

$$\begin{aligned} \varGamma (N+1)=N! \end{aligned}$$
(B.5)

for all \(N\in {\mathbb {N}}\),

$$\begin{aligned} \sqrt{\frac{2\pi }{x}}\left( \frac{x}{e}\right) ^{x}\le \varGamma (x)\le \sqrt{\frac{2\pi }{x}}\left( \frac{x}{e}\right) ^{x}e^{\frac{1}{12x}} \end{aligned}$$
(B.6)

for all \(x\in {\mathbb {R}}^+\). Moreover,

$$\begin{aligned} \psi (x):=\frac{d}{dx}\log (\varGamma (x))=\frac{\varGamma '(x)}{\varGamma (x)} =\log x-\frac{1}{12x}-p(x), \end{aligned}$$
(B.7)

for all \(x\in {\mathbb {R}}^+\) and where \(0\le p(x)\le 1/12x^2\). Then we have:

$$\begin{aligned} \frac{d}{dx}B(x)= & {} \frac{\psi (x+1)-\log x}{x}-\frac{B(x)}{x}\nonumber \\= & {} \frac{1}{x}\left[ \log \left( 1+\frac{1}{x}\right) +\frac{1}{12(x+1)}+p(x+1)\right] -\frac{B(x)}{x}, \end{aligned}$$
(B.8)

so that, denoting with \(B'(\rho _{\varLambda }|\varLambda |)=d/dx B(x)|_{x=\rho _{\varLambda }|\varLambda |}\) we have

$$\begin{aligned} S'_{|\varLambda |}(\rho _{\varLambda })&= B(\rho _{\varLambda }|\varLambda |)+\rho _{\varLambda }|\varLambda |B'(\rho _{\varLambda }|\varLambda |)=\frac{13\rho _{\varLambda }|\varLambda |+12}{12\rho _{\varLambda }|\varLambda |(\rho _{\varLambda }|\varLambda |+1)}\nonumber \\&\quad +\sum _{n\ge 2}\frac{(-1)^{n+1}}{n}\left( \frac{1}{\rho _{\varLambda }|\varLambda |}\right) ^n+p(\rho _{\varLambda }|\varLambda |+1)\,\lesssim \,\frac{1}{|\varLambda |}. \end{aligned}$$
(B.9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scola, G. Local Moderate and Precise Large Deviations via Cluster Expansions. J Stat Phys 183, 2 (2021). https://doi.org/10.1007/s10955-021-02740-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02740-2

Keywords

Mathematics Subject Classification

Navigation