Skip to main content

Advertisement

Log in

Adaptive HDG Methods for the Brinkman Equations with Application to Optimal Control

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper investigates adaptive hybridizable discontinuous Galerkin methods for the gradient-velocity–pressure formulation of Brinkman equations. We use piecewise polynomials of degree k to approximate the velocity, the velocity gradient, the pressure and the boundary traces. By the \(L^2\)-projection and inf-sup condition, a residual type a posteriori error estimator is introduced for the error measured by an energy norm. Moreover, we prove that the a posteriori error estimator is robust in the sense that the ratio of the upper and lower bounds is independent of the dynamic viscosity and permeability. Then the idea and the result, which have been used and obtained for Brinkman equations, are extended to solve the Brinkman optimal control problem. Based on the variational discretization concept, we also derive an efficient and reliable a posteriori error estimator for the error measured by an energy norm. Finally, several numerical results are provided to validate the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Anaya, V., Gatica, G.N., Mora, D., Ruiz-Baier, R.: An augmented velocity–vorticity–pressure formulation for the Brinkman equations. Int. J. Numer. Methods Fluids 79, 109–137 (2015)

    Article  MathSciNet  Google Scholar 

  2. Anaya, V., Mora, D., Oyarzúa, R., Ruiz-Baier, R.: A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem. Numer. Math. 133, 781–817 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anaya, V., Mora, D., Reales, C., Ruiz-Baier, R.: Stabilized mixed approximation of axisymmetric Brinkman flow. ESIAM Math. Model. Numer. Anal. 49, 855–874 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Araya, R., Solano, M., Vega, P.: Analysis of an adaptive HDG method for the Brinkman problem. IMA J. Numer. Anal. 39, 1502–1528 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonito, A., Nochetto, R.H.: Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal. 48, 734–771 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clement, P.: Approximation by finit element functions using local regularization. RAIRO Anal. Numer. 9, 77–84 (1975)

    MATH  Google Scholar 

  7. Cai, Z., He, C., Zhang, S.: Discontinuous finite element methods for interface problems: robust a priori and a posteriori error estimates. SIAM J. Numer. Anal. 55, 400–418 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casas, E., Chrysafinos, E.: A discontinuous Galerkin time-stepping scheme for the velocity tracking problem. SIAM J. Numer. Anal. 50, 2281–2306 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, H., Wang, X.-P.: A one-domain approach for modeling and simulation of free fluid over a porous medium. J. Comput. Phys. 259, 650–671 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, H., Li, J., Qiu, W.: Robust a posteriori error estimates for HDG method for convection diffusion equations. IMA J. Numer. Anla. 36, 437–462 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Chen, H., Qiu, W., Shi, K., Solano, M.: A superconvergent HDG method for the Maxwell equations. J. Sci. Comput. 70, 1010–1029 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, H., Qiu, W., Shi, K.: A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations. Comput. Methods Appl. Mech. Eng. 333, 287–310 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, G., Hu, W., Shen, J., Singler, J.R., Zhang, Y., Zheng, X.: An HDG method for distributed control of convection diffusion PDEs. J. Comput. Appl. Math. 343, 643–661 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Gopalakrishnan, J.: The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM J. Numer. Anal. 47, 1092–1125 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.-J.: Analysis of HDG methods for Stokes flow. Math. Comput. 80, 723–760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cockburn, B., Zhang, W.: A posteriori error estimates for HDG methods. J. Sci. Comput. 51, 582–607 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cockburn, B., Zhang, W.: A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 51, 676–693 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fu, G., Qiu, W., Zhang, W.: An analysis of HDG methods for convection-dominated diffusion problems. ESIAM: M2AN 49, 225–256 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fu, G., Jin, Y., Qiu, W.: Parameter-free superconvergent H(div)-conforming HDG methods for the Brinkman equations. IMA J. Numer. Anal. 39, 957–982 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gatica, L.F., Sequeira, F.A.: A priori and a posteriori error analyses of an HDG method for the Brinkman problem. Comput. Math. Appl. 75, 1191–1212 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, Springer Series in Computational Mathematics. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  23. Gatica, G.N., Gatica, L.F., Márquez, A.: Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow. Numer. Math. 126, 635–677 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gong, W., Hu, W., Mateos, M., Singler, J.R., Zhang, X., Zhang, Y.: A new HDG method for Dirichlet boundary control of convection diffusion PDEs II: Low regularity. SIAM J. Numer. Anal. 56, 2262–2287 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gong, W., Hu, W., Mateos, M., Singler, J. R., Zhang, Y.: An HDG method for tangential boundary control of Stokes equations I: high regularity (2018). arXiv:1811.08522

  26. Griebel, M., Klitz, M.: Homogenization and numerical simulation of flow in geometries with textile microstructures. Multiscale Model. Simul. 8, 1439–1460 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guzmán, J., Neilan, M.: A family of nonconforming elements for the Brinkman problem. IMA J. Numer. Anal. 32, 1484–1508 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hinze, M.: A variational discretization concept in control constrained optimization: the linear quadratic case. Comput. Optim. Appl. 30, 45–61 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hoppe, R.H.W., Sharma, N.: Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for Helmholtz equation. IMA J. Numer. Anal. 33, 898–921 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Juntenen, M., Stenberg, R.: Analysis of finite element methods for the Brinkman problem. Calcolo 47, 129–147 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kara, T., Goldak, J.: Three-dimensional numerical analysis of heat and mass transfer in heat pipes. Heat Mass Transf. 43, 775–785 (2007)

    Article  Google Scholar 

  32. Karakashian, O.A., Pascal, F.: Convergence of adaptive discontinuous Galerkin approximations for second-order elliptic problems. SIAM J. Numer. Anal. 45, 641–665 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kondratyuk, Y., Stevenson, R.: An optimal adaptive finite element method for the Stokes problem. SIAM J. Numer. Anal. 46, 747–775 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kumar, S., Ruiz-Baier, R., Sandilya, R.: Error bounds for discontinuous finite volume discretisations of Brinkman optimal control problems. J. Sci. Comput. 78, 64–93 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Larson, M.G., Møalqvist, A.: A posteriori error estimates for mixed finite element approximations of elliptic problems. Numer. Math. 108, 487–500 (2008)

    Article  MathSciNet  Google Scholar 

  37. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  38. Lu, P., Chen, H., Qiu, W.: An absolutely stable hp-HDG method for the time-harmonic Maxwell equations with high wave number. Math. Comput. 86, 1553–1577 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199, 582–597 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230, 7151–7175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16, 47–75 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Qiu, W., Shen, J., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses. Math. Comput. 87, 69–93 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schwab, C.: p- and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. The Clarendon Press, New York (1998)

    MATH  Google Scholar 

  44. Soon, S.-C., Cockburn, B., Stolarski, H.K.: A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Meth. Eng. 80, 1058–1092 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Schötzau, D., Zhu, L.: A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations. Appl. Numer. Math. 59, 2236–2255 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. American Mathematical Society, New York (2010)

    MATH  Google Scholar 

  47. Verfürth, R.: A Review of a Posteriori Error Estimation and adaptive mesh-refinement techniques. Wiley, New York (1996)

    MATH  Google Scholar 

  48. Verfürth, R.: Robust a posteriori error estimates for stationary convection diffusion equations. SIAM J. Numer. Anal. 43, 1766–1782 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Xie, X., Xu, J., Xue, G.: Uniformly-stable finite element methods for Darcy–Stokes–Brinkman models. J. Comput. Math. 26, 437–455 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Zhu, H., Celiker, F.: Error analysis of an HDG method for a distributed optimal control problem. J. Comput. Appl. Math. 307, 2–12 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangxin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of Haitao Leng was supported by the Cultivation Project of SCNU (Grant No. 19KJ08) and the NSF of China (Grant No. 12001209). The work of Huangxin Chen was supported by the NSF of China (Grant No. 11771363) and the Fundamental Research Funds for the Central Universities (Grant No. 20720180003).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, H., Chen, H. Adaptive HDG Methods for the Brinkman Equations with Application to Optimal Control. J Sci Comput 87, 46 (2021). https://doi.org/10.1007/s10915-021-01450-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01450-x

Keywords

Mathematics Subject Classification

Navigation