Skip to main content
Log in

A Nonmonotone Smoothing Newton Algorithm for Weighted Complementarity Problem

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The weighted complementarity problem (denoted by WCP) significantly extends the general complementarity problem and can be used for modeling a larger class of problems from science and engineering. In this paper, by introducing a one-parametric class of smoothing functions which includes the weight vector, we propose a smoothing Newton algorithm with nonmonotone line search to solve WCP. We show that any accumulation point of the iterates generated by this algorithm, if exists, is a solution of the considered WCP. Moreover, when the solution set of WCP is nonempty, under assumptions weaker than the Jacobian nonsingularity assumption, we prove that the iteration sequence generated by our algorithm is bounded and converges to one solution of WCP with local superlinear or quadratic convergence rate. Promising numerical results are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Asadi, S., Darvay, Z., Lesaja, G., Mahdavi-Amiri, N., Potra, F.A.: A full-Newton step interior-point method for monotone weighted linear complementarity problems. J. Optim. Theory Appl. (2020). https://doi.org/10.1007/s10957-020-01728-4

    Article  MathSciNet  MATH  Google Scholar 

  2. Anstreicher, K.M.: Interior-point algorithms for a generalization of linear programming and weighted centering. Optim. Methods Softw. 27, 605–612 (2012)

    Article  MathSciNet  Google Scholar 

  3. Burke, J., Xu, S.: A non-interior predictor–corrector path following algorithm for the monotone linear complementarity problem. Math. Program. 87, 113–130 (2000)

    Article  MathSciNet  Google Scholar 

  4. Chen, J.-S., Pan, S.H.: A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs. Pac. J. Optim. 8, 33–74 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  6. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford Mathematical Monographs, Oxford University Press, New York (1994)

    MATH  Google Scholar 

  7. Fan, J.Y.: The modified Levenberg–Marquardt method for nonlinear equations with cubic convergence. Math. Comput. 81, 447–466 (2012)

    Article  MathSciNet  Google Scholar 

  8. Fan, J.Y.: Accelerating the modified Levenberg–Marquardt method for nonlinear equations. Math. Comput. 83, 1173–1187 (2014)

    Article  MathSciNet  Google Scholar 

  9. Fukushima, M., Luo, Z.Q., Tseng, P.: Smoothing functions for second-order cone complementarity problems. SIAM J. Optim. 12, 436–460 (2002)

    Article  MathSciNet  Google Scholar 

  10. Gowda, M.S., Sznajder, R., Tao, J.: Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 393, 203–232 (2004)

    Article  MathSciNet  Google Scholar 

  11. Grippo, L., Lampariello, F., Lucidi, S.: A truncated Newton method with nonmonotone line search for unconstrained optimization. J. Optim. Theory Appl. 60, 401–419 (1989)

    Article  MathSciNet  Google Scholar 

  12. Hager, W.W., Zhang, H.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14, 1043–1056 (2004)

    Article  MathSciNet  Google Scholar 

  13. Huang, Z.H., Hu, S.L., Han, J.Y.: Convergence of a smoothing algorithm for symmetric cone complementarity problems with a nonmonotone line search. Sci. China Ser. A: Math. 52, 833–848 (2009)

    Article  MathSciNet  Google Scholar 

  14. Huang, Z.H., Ni, T.: Smoothing algorithms for complementarity problems over symmetric cones. Comput. Optim. Appl. 45, 557–579 (2010)

    Article  MathSciNet  Google Scholar 

  15. Huang, Z.H., Liu, X.H.: Extension of smoothing Newton algorithms for solve linear programming over symmetric cones. J. Syst. Sci. Complex. 24, 195–206 (2011)

    Article  MathSciNet  Google Scholar 

  16. Jian, Z.: A smoothing Newton algorithm for weighted linear complementarity problem. Optim. Lett. 10, 499–509 (2016)

    Article  MathSciNet  Google Scholar 

  17. Kong, L., Sun, J., Xiu, N.: A regularized smoothing Newton method for symmetric cone complementarity problems. SIAM J. Optim. 19, 1028–1047 (2008)

    Article  MathSciNet  Google Scholar 

  18. Kong, L.: Quadratic convergence of a smoothing Newton method for symmetric cone programming without strict complementarity. Positivity 16, 297–319 (2012)

    Article  MathSciNet  Google Scholar 

  19. Li, Y.M., Wei, D.Y.: A generalized smoothing Newton method for the symmetric cone complementarity problem. Appl. Math. Comput. 264, 335–345 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Liu, X.H., Huang, Z.H.: A smoothing Newton algorithm based on a one-parametric class of smoothing functions for linear programming over symmetric cones. Math. Math. Oper. Res. 70, 385–404 (2009)

    Article  MathSciNet  Google Scholar 

  21. Liu, L.X., Liu, S.Y., Wu, Y.: A smoothing Newton method for symmetric cone complementarity problem. J. Appl. Math. Comput. 47, 175–191 (2015)

    Article  MathSciNet  Google Scholar 

  22. Lu, N., Huang, Z.H.: A smoothing Newton algorithm for a class of non-monotonic symmetric cone linear complementarity problems. J. Optim. Theory Appl. 161, 446–464 (2014)

    Article  MathSciNet  Google Scholar 

  23. Luo, Z.Q.: New error bounds and their applications to convergence analysis of iterative algorithms. Math. Program. Ser. B 88, 341–355 (2000)

    Article  MathSciNet  Google Scholar 

  24. Ma, C.F.: A regularized smoothing Newton method for solving the symmetric cone complementarity problem. Math. Comput. Model. 54, 2515–2527 (2011)

    Article  MathSciNet  Google Scholar 

  25. Mousavi, S., Gao, Z., Han, L., Lim, A.: Quadratic Surface Support Vector Machine with L1 Norm Regularization. arXiv preprint arXiv:1908.08616 (2019)

  26. Narushima, Y., Sagara, N., Ogasawara, H.: A smoothing Newton method with Fischer–Burmeister function for second-order cone complementarity problems. J. Optim. Theory Appl. 149, 79–101 (2011)

    Article  MathSciNet  Google Scholar 

  27. Ni, T., Gu, W.Z.: Smoothing Newton algorithm for symmetric cone complementarity problems based on a one-parametric class of smoothing functions. J. Appl. Math. Comput. 35, 73–92 (2011)

    Article  MathSciNet  Google Scholar 

  28. Pang, J.S.: Error bounds in mathematical programming. Math. Program. 79, 299–332 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Pan, S., Chen, J.-S.: A one-parametric class of merit functions for the symmetric cone complementarity problem. J. Math. Anal. Appl. 355, 195–215 (2009)

    Article  MathSciNet  Google Scholar 

  30. Potra, F.A.: Weighted complementarity problems—a new paradigm for computing equilibria. SIAM J. Optim. 22, 1634–1654 (2012)

    Article  MathSciNet  Google Scholar 

  31. Potra, F.A.: Sufficient weighted complementarity problems. Comput. Optim. Appl. 64(2), 467–488 (2016)

    Article  MathSciNet  Google Scholar 

  32. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MathSciNet  Google Scholar 

  33. Sun, D., Sun, J.: Löwner’s operator and spectral functions in Euclidean Jordan algebras. Math. Oper. Res. 33(2), 421–445 (2008)

    Article  MathSciNet  Google Scholar 

  34. Tang, J.Y.: A variant nonmonotone smoothing algorithm with improved numerical results for large-scale LWCPs. Comput. Appl. Math. 37, 3927–3936 (2018)

    Article  MathSciNet  Google Scholar 

  35. Tang, J.Y., Dong, L., Fang, L., Zhou, J.C.: The convergence of a modified smoothing-type algorithm for the symmetric cone complementarity problem. J. Appl. Math. Comput. 43, 307–328 (2013)

    Article  MathSciNet  Google Scholar 

  36. Tang, J.Y., Zhou, J.C., Fang, L.: Strong convergence properties of a modified nonmonotone smoothing algorithm for the SCCP. Optim. Lett. 12, 411–424 (2018)

    Article  MathSciNet  Google Scholar 

  37. Yoshise, A.: Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones. SIAM J. Optim. 17, 1129–1153 (2006)

    Article  MathSciNet  Google Scholar 

  38. Zhang, J.L., Chen, J.: A smoothing Levenberg–Marquardt type method for LCP. J. Comput. Math. 22, 735–752 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchao Zhang.

Additional information

Communicated by Florian Potra.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by the National Natural Science Foundation of China (11601466), China Scholarship Council and Nanhu Scholars Program for Young Scholars of XYNU, and by the USA National Science Foundation (1522654, 1819161).

Appendix: The proof of the example given in remark (ii) for Assumption 5.1

Appendix: The proof of the example given in remark (ii) for Assumption 5.1

Since M is positive definite, all of its diagonal elements are greater than zero. Without loss of generality, here we assume that \(M-I_n\) is positive definite where \(I_n\) represents the \(n\times n\) identity matrix. Consider the smoothing function

$$\begin{aligned}\psi _c(\mu ,a,b)=a+b-\sqrt{a^2+b^2+(\tau -2)a b+(4-\tau )c+4\mu ^t },~\forall ~(\mu ,a,b)\in \mathcal {R}_+\times \mathcal {R}^2,\end{aligned}$$

where \(t\in [1,2]\) and \(\tau \in [0,4)\). By (3.6), we have

$$\begin{aligned}\psi _c(0,a,b)=0\Longleftrightarrow a\ge 0,~ b\ge 0,~ ab=c.\end{aligned}$$

Then we can reformulate the problem (5.7) as the following nonlinear smooth equations:

$$\begin{aligned}\mathcal {H}(z):=\mathcal {H}(\mu ,x,s)=\left( \begin{array}{c} {\mu }\\ s-Mx-a\\ \psi _{w_1}(\mu ,x_1,s_1)\\ \vdots \\ \psi _{w_n}(\mu ,x_n,s_n) \end{array} \right) =0\end{aligned}$$

and apply Algorithm 4.1 to solve it. Let

$$\begin{aligned}g(\mu ,a,b):=\sqrt{a^2+b^2+(\tau -2)ab+(4-\tau )c+4\mu ^t},~\forall ~(\mu ,a,b)\in \mathcal {R}_+\times \mathcal {R}^2.\end{aligned}$$

Then, \(\mathcal {H}(z)\) is continuously differentiable at any \(z\in \mathcal {R}_{++}\times \mathcal {R}^{2n}\) with its Jacobian

$$\begin{aligned}\mathcal {H}'(z)=\left[ \begin{array}{cccc} 1&{}0&{}0\\ 0&{}-M&{}I\\ d_\mu &{}\mathbf{diag }(d_x)&{}\mathbf{diag }(d_s) \end{array} \right] , \end{aligned}$$

where

$$\begin{aligned}&d_\mu :=\bigg (-\frac{2t}{\mu ^{1-t}g(\mu ,x_1,s_1)},...,-\frac{2t}{\mu ^{1-t}g(\mu ,x_n,s_n)}\bigg )^T,\\&d_x:=\bigg (1-\frac{x_1+(\tau /2-1)s_1}{g(\mu ,x_1,s_1)},...,1-\frac{x_n+(\tau /2-1)s_n}{g(\mu ,x_n,s_n)}\bigg )^T,\\&d_s:=\bigg (1-\frac{s_1+(\tau /2-1)x_1}{g(\mu ,x_1,s_1)},...,1-\frac{s_n+(\tau /2-1)x_n}{g(\mu ,x_n,s_n)}\bigg )^T. \end{aligned}$$

Since M is positive definite, \(\mathcal {H}'(z)\) is nonsingular at any \(z\in \mathcal {R}_{++}\times \mathcal {R}^{2n}\) and we can find its inverse

$$\begin{aligned} \mathcal {H}'(z)^{-1}=\left[ \begin{array}{cccc} 1&{}0&{}0\\ z_{21}&{}z_{22}&{}z_{23}\\ z_{31}&{}z_{32}&{}z_{33} \end{array} \right] , \end{aligned}$$

where

$$\begin{aligned}&z_{21}=-[\mathbf{diag }(d_x)+\mathbf{diag }(d_s)M]^{-1}d_\mu ,\\&z_{22}=-[\mathbf{diag }(d_x)+\mathbf{diag }(d_s)M]^{-1}\mathbf{diag }(d_s),\\&z_{23}=[\mathbf{diag }(d_x)+\mathbf{diag }(d_s)M]^{-1}, \\&z_{31}=-M[\mathbf{diag }(d_x)+\mathbf{diag }(d_s)M]^{-1}d_\mu ,\\&z_{32}=I-M[\mathbf{diag }(d_x)+\mathbf{diag }(d_s)M]^{-1}\mathbf{diag }(d_s),\\&z_{33}=M[\mathbf{diag }(d_x)+\mathbf{diag }(d_s)M]^{-1}. \end{aligned}$$

In what follows, we divide the analysis into three parts.

Part 1. We show that \(\mathbf{diag }(d_x)\) and \(\mathbf{diag }(d_s)\) are positive semidefinite and bounded when \(\mu \rightarrow 0^+\). This result holds by noticing that \(g(\mu ,a,b)\) can be written as

$$\begin{aligned} g(\mu ,a,b)= & {} \sqrt{[a+(\tau /2-1)b]^2+\tau (1-\tau /4)b^2+(4-\tau )c+4\mu ^t}\\= & {} \sqrt{[b+(\tau /2-1)a]^2+\tau (1-\tau /4)a^2+(4-\tau )c+4\mu ^t}, \end{aligned}$$

and hence for any \((\mu ,a,b)\in \mathcal {R}_+\times \mathcal {R}^2\),

$$\begin{aligned}0\le 1-\frac{a+(\tau /2-1)b}{g(\mu ,a,b)}\le 2,~0\le 1-\frac{b+(\tau /2-1)a}{g(\mu ,a,b)}\le 2.\end{aligned}$$

Part 2. We show that \(\Vert [\mathbf{diag }(d_x)+\mathbf{diag }(d_s)M]^{-1}\Vert \le \frac{\sqrt{n}\mathrm {cond}(M-I_n)}{2-\sqrt{\tau }}\) when \(\mu \rightarrow 0^+\), where \(\mathrm {cond}(M-I_n)\) is the conditional number of \(M-I_n\). First, we have

$$\begin{aligned}\mathbf{diag }(d_x)+\mathbf{diag }(d_s)=\mathbf {diag}(d_{xs}),\end{aligned}$$

where

$$\begin{aligned}d_{xs}:=\bigg (2-\frac{\tau /2(x_1+s_1)}{g(\mu ,x_1,s_1)},...,2-\frac{\tau /2(x_n+s_n)}{g(\mu ,x_n,s_n)}\bigg )^T.\end{aligned}$$

Since \(\big |\frac{\tau /2(a+b)}{g(\mu ,a,b)}\big |\le \big |\frac{\tau /2(a+b)}{\sqrt{a^2+b^2+(\tau -2)ab}}\big |\le \sqrt{\tau }\) holds for any \(\tau \in [0,4)\) and \((\mu ,a,b)\in \mathcal {R}_+\times \mathcal {R}^2\), we have

$$\begin{aligned}0<2-\sqrt{\tau }<2-\frac{\tau /2(x_i+s_i)}{g(\mu ,x_i,s_i)}<2+\sqrt{\tau },~~\forall ~i=1,...,n.\end{aligned}$$

Hence, \(\mathbf {diag}(d_{xs})\) is positive definite and so is \(\mathbf {diag}(d_{xs})^{-1}\). Since \(M-I_n\) is positive definite, it is invertible and \((M-I_n)^{-1}\) is also positive definite. So, we have

$$\begin{aligned} \mathbf{diag }(d_x)+\mathbf{diag }(d_s)M= & {} \mathbf {diag}(d_{xs})-\mathbf{diag }(d_s)+\mathbf{diag }(d_s)M\\= & {} \mathbf {diag}(d_{xs})+\mathbf{diag }(d_s)(M-I_n)\\= & {} \mathbf {diag}(d_{xs}) [(M-I_n)^{-1}+\mathbf {diag}(d_{xs})^{-1}\mathbf{diag }(d_s)](M-I_n). \end{aligned}$$

When \(\mu \rightarrow 0^+\), since \(\mathbf{diag }(d_s)\) is positive semidefinite by Part 1, \(\mathbf {diag}(d_{xs})^{-1}\mathbf{diag }(d_s)\) is positive semidefinite. So, \((M-I_n)^{-1}+\mathbf {diag}(d_{xs})^{-1}\mathbf{diag }(d_s)\) is positive definite. Hence, when \(\mu \rightarrow 0^+,\) \(\mathbf{diag }(d_x)+\mathbf{diag }(d_s)M\) is nonsingular and

$$\begin{aligned}{}[\mathbf{diag }(d_x)+ & {} \mathbf{diag }(d_s)M]^{-1}=(M-I_n)^{-1}[(M-I_n)^{-1}\\+ & {} \mathbf {diag}(d_{xs})^{-1}\mathbf{diag }(d_s)]^{-1}\mathbf {diag}(d_{xs})^{-1},\end{aligned}$$

which implies that

$$\begin{aligned}\Vert [\mathbf{diag }(d_x)+\mathbf{diag }(d_s)M]^{-1}\Vert \le \frac{\sqrt{n}\mathrm {cond}(M-I_n)}{2-\sqrt{\tau }},\end{aligned}$$

where \(\mathrm {cond}(M-I_n):=\Vert M-I_n\Vert \Vert (M-I_n)^{-1}\Vert \).

Part 3. We show that when \(\mu \rightarrow 0^+\), if \(w>0\), then \(\Vert d_\mu \Vert \le \varrho \) where \(\varrho >0\) is a constant, and if \(w\ge 0\), then \(\Vert d_\mu \Vert \le \frac{\sqrt{n}t}{\mu ^{1-\frac{t}{2}}}\). This result holds since for any \((\mu ,a,b)\in \mathcal {R}_+\times \mathcal {R}^2\),

$$\begin{aligned} \frac{2t}{\mu ^{1-t}g(\mu ,a,b)}= & {} \frac{2t}{\mu ^{1-t}\sqrt{[a+(\tau /2-1)b]^2+\tau (1-\tau /4)b^2+(4-\tau )c+4\mu ^t}}\\\le & {} \left\{ \begin{array}{c} \frac{2t\mu ^{t-1}}{\sqrt{(4-\tau )c}},~\mathrm {if}~c>0,~~~~~~~~~~~~~ \\ \frac{t}{\mu ^{1-\frac{t}{2}}}, ~~~\mathrm {if}~c=0.~~~~~~~~~~~~\\ \end{array} \right. \end{aligned}$$

Therefore, when \(\mu \rightarrow 0^+\), from Parts 1,2 and 3, we have that \(z_{22},z_{23},z_{32}\) and \(z_{33}\) are bounded, and \(z_{21}, z_{31}\) are bounded or

$$\begin{aligned}\Vert z_{21}\Vert \le \frac{n\mathrm {cond}(M-I_n)t}{(2-\sqrt{\tau })\mu ^{1-\frac{t}{2}}}~~\mathrm {and}~~\Vert z_{31}\Vert \le \frac{n\Vert M\Vert \mathrm {cond}(M-I_n)t}{(2-\sqrt{\tau })\mu ^{1-\frac{t}{2}}}.\end{aligned}$$

Hence, for any \(t\in [1,2]\), we can conclude that for any \(z=(\mu ,x,s)\in \mathcal {R}_{++}\times \mathcal {R}^{2n}\), when \(\mu \rightarrow 0^+\), \(\Vert \mathcal {H}'(z)^{-1}\Vert \) is bounded or there exists a constant \({C}_t>0\) such that

$$\begin{aligned}\Vert \mathcal {H}'(z)^{-1}\Vert \le \frac{{C}_t}{\mu ^{1-\frac{t}{2}}}.\end{aligned}$$

Since \(1-\frac{t}{2}\in [0,1/2],\) there exist constants \(C>0\) and \(d\in [0,1/2)\) such that Assumption 5.1 holds. This completes the proof.\(\square \)

The proof of Lemma 4

For any \(\xi =(\mu ,a,b)^T, \xi '=(\mu ',a',b')^T\in \mathcal {R}^3\), we have

$$\begin{aligned} |\psi _c(\xi )-\psi _c(\xi ')|= & {} |\psi _c(\mu ,a,b)-\psi _c(\mu ',a',b')|\\= & {} |a+b-\Vert (a,b,\sqrt{2c},2\mu )^T\Vert -(a'+b')+\Vert (a',b',\sqrt{2c},2\mu ')^T\Vert |\\\le & {} |a-a'|+|b-b'|+|\Vert (a,b,\sqrt{2c},2\mu )^T\Vert -\Vert (a',b',\sqrt{2c},2\mu ')^T\Vert |\\\le & {} |a-a'|+|b-b'|+|\Vert (a,b,\sqrt{2c},2\mu )^T-(a',b',\sqrt{2c},2\mu ')^T\Vert |\\= & {} |a-a'|+|b-b'|+\Vert (a-a',b-b',2(\mu -\mu '))^T\Vert \\\le & {} \sqrt{2[(a-a')^2+(b-b')^2]}+\sqrt{(a-a')^2+(b-b')^2+4(\mu -\mu ')^2}\\\le & {} (\sqrt{2}+2)\Vert \xi -\xi '\Vert . \end{aligned}$$

This proves (i). Now we prove (ii) by considering the following three cases.

Case 1. If \(c>0\), then \(\psi _c\) is differentiable at any \(\xi \in \mathcal {R}^3\) with

$$\begin{aligned} {\psi }_c'(\xi )= & {} \bigg (-\frac{4\mu }{\sqrt{a^2+b^2+2c+4\mu ^2}}, 1-\frac{a}{\sqrt{a^2+b^2+2c+4\mu ^2}},\\&1-\frac{b}{\sqrt{a^2+b^2+2c+4\mu ^2}}\bigg )^T\end{aligned}$$

and

$$\begin{aligned}{\psi }_c''(\xi )=\frac{1}{(\sqrt{a^2+b^2+2c+4\mu ^2})^3}\times M\end{aligned}$$

where

$$\begin{aligned}M:=\left[ \begin{array}{cccc} -4(a^2+b^2+2c)&{}4a\mu &{}4b\mu \\ 4a\mu &{}-(b^2+2c+4\mu ^2)&{}ab\\ 4b\mu &{}ab&{}-(a^2+2c+4\mu ^2) \end{array} \right] , \end{aligned}$$

which yields

$$\begin{aligned} \Vert {\psi }_c''(\xi )\Vert\le & {} \frac{\Vert M\Vert }{(\sqrt{a^2+b^2+2c+4\mu ^2})^3}\nonumber \\\le & {} \frac{ \sqrt{18(a^2+b^2+2c+4\mu ^2)^2}}{(\sqrt{a^2+b^2+2c+4\mu ^2})^3}\nonumber \\= & {} \frac{3\sqrt{2}}{\sqrt{a^2+b^2+2c+4\mu ^2}}\nonumber \\\le & {} \frac{3}{\sqrt{c}}. \end{aligned}$$
(7.1)

By (7.1), for any \(u,v\in \mathcal {R}^3\) we have

$$\begin{aligned} \Vert {\psi }_c'(u)-{\psi }_c'(v)\Vert \le \frac{3}{\sqrt{c}}\Vert u-v\Vert .\end{aligned}$$
(7.2)

For any \(\xi \in \mathcal {R}^3\) and \(h\in \mathcal {R}^3\), \(\psi _c\) is differentiable at \(\xi +h\) and hence \( \partial {\psi }_c(\xi +h)=\{{\psi }_c'(\xi +h)^T\}\). So, from (7.2) we have for any \(V\in \partial {\psi }_c(\xi +h)\) and \(h\rightarrow 0\),

$$\begin{aligned} |{\psi }_c(\xi +h)-{\psi }_c(\xi )-Vh|= & {} |{\psi }_c(\xi +h)-{\psi }_c(\xi )-{\psi }_c'(\xi +h)^Th|\\\le & {} |{\psi }_c(\xi +h)-{\psi }_c(\xi )-{\psi }_c'(\xi )^Th|+|[{\psi }_c'(\xi +h)-{\psi }_c'(\xi )]^Th|\\\le & {} |{\psi }_c(\xi +h)-{\psi }_c(\xi )-{\psi }_c'(\xi )^Th|+\frac{3}{\sqrt{c}}\Vert h\Vert ^2\\= & {} \bigg |\int _0^1 [{\psi }_c'(\xi +th)-{\psi }_c'(\xi )]^T hdt\bigg |+\frac{3}{\sqrt{c}}\Vert h\Vert ^2\\\le & {} \frac{3}{\sqrt{c}}\Vert h\Vert ^2\int _0^1 tdt+\frac{3}{\sqrt{c}}\Vert h\Vert ^2\\= & {} \frac{9}{2\sqrt{c}} \Vert h\Vert ^2. \end{aligned}$$

Case 2. If \(c=0\) and \(\xi =0\), then for any nonzero direction vector \(h=(\tilde{\mu },\tilde{a},\tilde{b})^T\in \mathcal {R}^3\), \({\psi }_c\) is smooth at the point \(0+h=h\). Thus, \(V\in \partial {\psi }_c(0+h)=\{{\psi }_c'(h)^T\}\) is uniquely given by

$$\begin{aligned}V=\bigg (-\frac{4\tilde{\mu }}{\sqrt{\tilde{a}^2+\tilde{b}^2+4\tilde{\mu }^2}}, 1-\frac{\tilde{a}}{\sqrt{\tilde{a}^2+\tilde{b}^2+4\tilde{\mu }^2}}, 1-\frac{\tilde{b}}{\sqrt{\tilde{a}^2+\tilde{b}^2+4\tilde{\mu }^2}}\bigg ).\end{aligned}$$

Then, for any \(V\in \partial {\psi }_c(0+h)\) and \(h\rightarrow 0\),

$$\begin{aligned} |{\psi }_c(0+h)-{\psi }_c(0)-Vh|= & {} \bigg |-\sqrt{\tilde{a}^2+\tilde{b}^2+4\tilde{\mu }^2}+\frac{\tilde{a}^2+\tilde{b}^2+4\tilde{\mu }^2}{\sqrt{\tilde{a}^2+\tilde{b}^2+4\tilde{\mu }^2}}\bigg |\\= & {} 0.\end{aligned}$$

Case 3. If \(c=0\) and \(\xi \ne 0\), then \(\psi _c\) is differentiable at \(\xi \) and from (7.1) we have

$$\begin{aligned} \Vert {\psi }_c''(\xi )\Vert\le & {} \frac{3\sqrt{2}}{\sqrt{a^2+b^2+4\mu ^2}}\nonumber \\\le & {} \frac{3\sqrt{2}}{\sqrt{a^2+b^2+\mu ^2}}=\frac{3\sqrt{2}}{\Vert \xi \Vert }. \end{aligned}$$
(7.3)

Next we show that \({\psi }_c'(\xi )\) is locally Lipschitz continuous at \(\xi \) with the constant \(\frac{6\sqrt{2}}{\Vert \xi \Vert }\). In fact, let \(u,v\in N(\xi ,\frac{\Vert \xi \Vert }{2})\), we have

$$\begin{aligned} {\psi }_c'(u)={\psi }_c'(v)+\int _0^1{\psi }_c''(v+t(u-v))(u-v)dt.\end{aligned}$$
(7.4)

By (7.3), we have

$$\begin{aligned} \Vert {\psi }_c''(v+t(u-v))\Vert \le \frac{3\sqrt{2}}{\Vert v+t(u-v)\Vert }.\end{aligned}$$
(7.5)

Since \(u,v\in N(\xi ,\frac{\Vert \xi \Vert }{2})\), we have

$$\begin{aligned}\Vert v+t(u-v)\Vert =\Vert tu+(1-t)v\Vert \in N(\xi ,\frac{\Vert \xi \Vert }{2}).\end{aligned}$$

It follows that

$$\begin{aligned} \Vert v+t(u-v)\Vert \ge \Vert \xi \Vert -\Vert v+t(u-v)-\xi \Vert \ge \Vert \xi \Vert -\frac{\Vert \xi \Vert }{2}=\frac{\Vert \xi \Vert }{2}.\end{aligned}$$

This together with (7.5) yields

$$\begin{aligned} \Vert {\psi }_c''(v+t(u-v))\Vert \le \frac{6\sqrt{2}}{\Vert \xi \Vert }.\end{aligned}$$
(7.6)

Thus, from (7.4) and (7.6), we have for any \(u,v\in N(\xi ,\frac{\Vert \xi \Vert }{2})\),

$$\begin{aligned} \Vert {\psi }_c'(u)-{\psi }_c'(v)\Vert \le \frac{6\sqrt{2}}{\Vert \xi \Vert }\Vert u-v\Vert .\end{aligned}$$
(7.7)

Now we show that \({\psi }_c(\xi )\) is strongly semismooth at \(\xi \ne 0\). Since \(\xi \ne 0\), when \(h\rightarrow 0\), \(\xi +h\ne 0\) and hence \( \partial {\psi }_c(\xi +h)=\{{\psi }_c'(\xi +h)^T\}\). So, from (7.7), similarly as the proof of Case 1, we have for any \(V\in \partial {\psi }_c(\xi +h)\) and \(h\rightarrow 0\),

$$\begin{aligned} |{\psi }_c(\xi +h)-{\psi }_c(\xi )-Vh| \le \frac{6\sqrt{2}}{\Vert \xi \Vert }\Vert h\Vert ^2\int _0^1 tdt+\frac{6\sqrt{2}}{\Vert \xi \Vert }\Vert h\Vert ^2 =\frac{9\sqrt{2}}{\Vert \xi \Vert } \Vert h\Vert ^2.\end{aligned}$$

Thus, the proof is completed.\(\square \)

The proof of Lemma 5

Let \(\mathcal {{H}}(z)\) be defined by (5.37). Then, \(\mathcal {{H}}(z)\) is continuously differentiable at any \(z=(\mu ,x,s,y)\in \mathcal {R}_{++}\times \mathcal {R}^{2n+m}\) and its Jacobian is

$$\begin{aligned}\mathcal {{H}}'(z)=\left[ \begin{array}{cccc} 1&{}0&{}0&{}0\\ 0&{}P&{}Q&{}R\\ D_\mu &{}\mathbf{diag }(D_x) &{}\mathbf{diag }(D_s)&{}0 \end{array} \right] ,\end{aligned}$$

where

$$\begin{aligned}&D_\mu :=\Bigg (-\frac{4\mu }{\sqrt{x_1^2+s_1^2+2 w_1+4\mu ^2}},....,-\frac{4\mu }{\sqrt{x_n^2+s_n^2+2 w_n+4\mu ^2}}\Bigg )^T, \\&D_x:=\Bigg (1-\frac{x_1}{\sqrt{x_1^2+s_1^2+2 w_1+4\mu ^2}},...,1-\frac{x_n}{\sqrt{x_n^2+s_n^2+2 w_n+4\mu ^2}}\Bigg )^T,\\&D_s:=\Bigg (1-\frac{s_1}{\sqrt{x_1^2+s_1^2+2 w_1+4\mu ^2}},....,1-\frac{s_n}{\sqrt{x_n^2+s_n^2+2 w_n+4\mu ^2}}\Bigg )^T. \end{aligned}$$

We now divide the proof by the following three parts.

Part (i) We show that \(\mathcal {{{H}}}(z)\) is Lipschitz continuous on \(\mathcal {R}^{1+2n+m}\). In fact, since \((Px+Qs+Ry-a)'=[P, Q, R]\), we have that \(Px+Qs+Ry-a\) is Lipschitz continuous on \(\mathcal {R}^{2n+m}\). Moreover, from (i) of Lemma 4, \({\psi }_c\) is Lipschitz continuous on \(\mathcal {R}^{3}\). Hence, \(\mathcal {{{H}}}(z)\) is Lipschitz continuous on \(\mathcal {R}^{1+2n+m}\).

Part (ii) For any \(\theta >0\), we show that \(\mathcal {{{H}}}'(z)\) is bounded and Lipschitz continuous on the set

$$\begin{aligned}\varOmega :=\{z=(\mu ,x,s,y)\in \mathcal {R}_{++}\times \mathcal {R}^{2n+m}|~\mu \ge \theta \}.\end{aligned}$$

In fact, for any \(i=1,...,n,\) since

$$\begin{aligned}&0\le \frac{4\mu }{\sqrt{x_i^2+s_i^2+2 w_i+4\mu ^2}}\le 2,\\&0\le 1-\frac{x_i}{\sqrt{x_i^2+s_i^2+2 w_i+4\mu ^2}}\le 2,\\&0\le 1-\frac{s_i}{\sqrt{x_i^2+s_i^2+2 w_i+4\mu ^2}}\le 2, \end{aligned}$$

\(D_\mu \), \(D_x\) and \(D_s\) are bounded and hence \(\mathcal {{H}}'(z)\) is bounded. Let

$$\begin{aligned}\varGamma :=\{\upsilon =(\mu ,a,b)\in \mathcal {R}_{++}\times \mathcal {R}^{2}|~\mu \ge \theta \}.\end{aligned}$$

For any \(\upsilon \in \varGamma \), define

$$\begin{aligned}f_c(\upsilon ):=1-\frac{a}{\sqrt{a^2+b^2+2c+4\mu ^2}}.\end{aligned}$$

Since \(\mu \ge \theta >0,\) \(f_c(\upsilon )\) is continuously differentiable and

$$\begin{aligned}f_c'(\upsilon )=\frac{1}{(\sqrt{a^2+b^2+2c+4\mu ^2})^3}\bigg [4a\mu ,-(b^2+2c+4\mu ^2),~ab\bigg ],\end{aligned}$$

which yields

$$\begin{aligned}\Vert f_c'(\upsilon )\Vert =\frac{\sqrt{16a^2\mu ^2 + (b^2+2c+4\mu ^2)^2+ a^2b^2}}{(\sqrt{a^2+b^2+2c+4\mu ^2})^3}.\end{aligned}$$

By noticing that

$$\begin{aligned} 16 a^2\mu ^2\le 2(a^2+4\mu ^2)^2\le & {} 2(a^2+b^2+2c+4\mu ^2)^2,\\ (b^2+2c+4\mu ^2)^2\le & {} (a^2+b^2+2c+4\mu ^2)^2,\\ a^2b^2\le (a^2+b^2)^2\le & {} (a^2+b^2+2c+4\mu ^2)^2, \end{aligned}$$

we have

$$\begin{aligned}\Vert f_c'(\upsilon )\Vert \le \frac{2}{\sqrt{a^2+b^2+2c+4\mu ^2}}\le \frac{1}{\mu }\le \frac{1}{\theta }.\end{aligned}$$

Thus, for any \(\tilde{\upsilon }, \upsilon \in \varGamma \), we have

$$\begin{aligned}\Vert f_c(\tilde{\upsilon })-f_c(\upsilon )\Vert |\le \frac{1}{\theta }\Vert \tilde{\upsilon }-\upsilon \Vert .\end{aligned}$$

This implies that \(f_c\) is Lipschitz continuous on \(\varGamma \) and hence \(D_x\) is Lipschitz continuous on \(\varOmega \). By a similar way, we can show that \(D_s\) and \(D_\mu \) are also Lipschitz continuous on \(\varOmega \) and so is \(\mathcal {{{H}}}'(z)\).

Part (iii) We show that \(\mathcal {{{M}}}'(z)\) is Lipschitz continuous on the set \(\varTheta \) defined by (5.9). In fact, \(\mathcal {{{M}}}(z)\) is continuous differentiable at any \(z\in \mathcal {R}_{++}\times \mathcal {R}^{2n+m}\) and

$$\begin{aligned}\mathcal {M}'(z)=2\mathcal {H}(z)^T\mathcal {H}'(z).\end{aligned}$$

So, for any \(\tilde{z},z\in \varTheta \), by Parts (i) and (ii) and \(\Vert \mathcal {H}(\tilde{z})\Vert \le 2 \Vert \mathcal {H}(z^0)\Vert \), there exists a constant \(M>0\) such that

$$\begin{aligned} \Vert \mathcal {M}'(\tilde{z})-\mathcal {M}'(z)\Vert= & {} 2\Vert \mathcal {H}(\tilde{z})^T\mathcal {H}'(\tilde{z})-\mathcal {H}(z)^T\mathcal {H}'(z)\Vert \\= & {} 2\Vert \mathcal {H}(\tilde{z})^T[\mathcal {H}'(\tilde{z})-\mathcal {H}'({z})]-[\mathcal {H}(z)-\mathcal {H}(\tilde{z})]^T\mathcal {H}'(z)\Vert \\\le & {} 2[\Vert \mathcal {H}(\tilde{z})\Vert \Vert \mathcal {H}'(\tilde{z})-\mathcal {H}'(z)\Vert +\Vert \mathcal {H}(z)-\mathcal {H}(\tilde{z})\Vert \Vert \mathcal {H}'({z})\Vert ]\\= & {} M\Vert z-\tilde{z}\Vert . \end{aligned}$$

This completes the proof.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Zhang, H. A Nonmonotone Smoothing Newton Algorithm for Weighted Complementarity Problem. J Optim Theory Appl 189, 679–715 (2021). https://doi.org/10.1007/s10957-021-01839-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01839-6

Keywords

Mathematics Subject Classification

Navigation