Skip to main content
Log in

An Extended Interval Type-2 Fuzzy ORESTE Method for Risk Analysis in FMEA

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The failure mode and effect analysis (FMEA) is a prospective engineering technique which can prevent risk in advance by identifying, assessing potential failure modes and their effects. However, the traditional FMEA approach possesses the limitations in improperly identifying risk factor weights, inefficiently calculating risk priority number and improperly evaluating failure modes in practice. This paper proposes a hybrid risk analysis framework for FMEA based on interval type-2 fuzzy numbers and ORESTE method. First, the interval type-2 fuzzy numbers are utilized to express the uncertain risk evaluation information provided by experts. Second, the power average (PA) operator for interval type-2 fuzzy numbers is constructed to fuse individual risk assessment information and build the group risk assessment matrix. Then, the extended ORESTE method is introduced to determine the risk priority of each failure mode, in which distance measure of interval type-2 fuzzy numbers is incorporated. Finally, a case of ocean-going fishing vessel in a marine industry is selected to illustrate the application and feasibility of the proposed FMEA approach. A comparative analysis is performed to verify the effectiveness of the extended ORESTE method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liu, H.C., Liu, L., Lin, Q.L.: Fuzzy failure mode and effects analysis using fuzzy evidential reasoning and belief rule-based Methodology. IEEE Trans. Reliab. 62(1), 23–36 (2013)

    MathSciNet  Google Scholar 

  2. Kang, J.C., Sun, L.P., Sun, H., Wu, C.L.: Risk assessment of floating offshore wind turbine based on correlation-FMEA. Ocean Eng. 129, 382–388 (2017)

    Google Scholar 

  3. Kim, J.H., Jeong, H.Y., Park, J.S.: Development of the FMECA process and analysis methodology for railroad system. Int. J. Automot. Technol. 10(6), 753–759 (2009)

    Google Scholar 

  4. Chai, K.C., Jong, C.H., Tay, K.M., Lim, C.P.: A perceptual computing-based method to prioritize failure modes in failure mode and effect analysis and its application to edible bird nest farming. Appl. Soft Comput. 49, 734–747 (2016)

    Google Scholar 

  5. Chang, K.H., Cheng, C.H.: A risk assessment methodology using intuitionistic fuzzy set in FMEA. Int. J. Syst. Sci. 41(12), 1457–1471 (2010)

    MathSciNet  Google Scholar 

  6. Wang, W., Liu, X., Liu, S.: Failure mode and effect analysis for machine tool risk analysis using extended gained and lost dominance score method. IEEE Trans. Reliab. (2019). https://doi.org/10.1109/TR.2019.2955500

    Article  Google Scholar 

  7. Nie, R.X., Tian, Z.P., Wang, X.K., Wang, J.Q., Wang, T.L.: Risk evaluation by FMEA of supercritical water gasification system using multi-granular linguistic distribution assessment. Knowl. Based Syst. 162, 185–201 (2018)

    Google Scholar 

  8. Kutlu, A.C., Ekmekcioglu, M.: Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP. Expert Syst. Appl. 39(1), 61–67 (2012)

    Google Scholar 

  9. Zammori, F., Gabbrielli, R.: ANP/RPN: a multi criteria evaluation of the Risk Priority Number. Qual. Reliabil. Eng. Int. 28(1), 85–104 (2012)

    Google Scholar 

  10. Tooranloo, H.S., Ayatollah, A.S.: A model for failure mode and effects analysis based on intuitionistic fuzzy approach. Appl. Soft Comput. 49, 238–247 (2016)

    Google Scholar 

  11. Yazdi, M., Daneshvar, S., Setareh, H.: An extension to Fuzzy developed failure mode and effects analysis (FDFMEA) application for aircraft landing system. Saf. Sci. 98, 113–123 (2017)

    Google Scholar 

  12. Bozdag, E., Asan, U., Soyer, A., Serdarasan, S.: Risk prioritization in Failure Mode and Effects Analysis using interval type-2 fuzzy sets. Expert Syst. Appl. 42(8), 4000–4015 (2015)

    Google Scholar 

  13. Sharma, R., Sharma, P.: System failure behavior and maintenance decision making using, RCA, FMEA and FM. J. Qual. Maint. Eng. 16, 64–88 (2010)

    Google Scholar 

  14. Liu, H.C., Wang, L.E., You, X.Y., Wu, S.M.: Failure mode and effect analysis with extended grey relational analysis method in cloud setting. Total Qual. Manage. Bus. Excell. 30(7–8), 745–767 (2019)

    Google Scholar 

  15. Wang, W.Z., Liu, X.W., Qin, J.D., Liu, S.L.: An extended generalized TODIM for risk evaluation and prioritization of failure modes considering risk indicators interaction. Iise Trans. 51(11), 1236–1250 (2019)

    Google Scholar 

  16. Wang, W.Z., Liu, X.W., Qin, Y., Fu, Y.: A risk evaluation and prioritization method for FMEA with prospect theory and Choquet integral. Saf. Sci. 110, 152–163 (2018)

    Google Scholar 

  17. Wang, L.E., Liu, H.C., Quan, M.Y.: Evaluating the risk of failure modes with a hybrid MCDM model under interval-valued intuitionistic fuzzy environments. Comput. Ind. Eng. 102, 175–185 (2016)

    Google Scholar 

  18. Liu, H.C., Hu, Y.P., Wang, J.J., Sun, M.H.: Failure mode and effects analysis using two-dimensional uncertain linguistic variables and alternative queuing method. IEEE Trans. Reliab. 68(2), 554–565 (2019)

    Google Scholar 

  19. Qin, J.D., Liu, X.W., Pedrycz, W.: An extended TODIM multi-criteria group decision making method for green supplier selection in interval type-2 fuzzy environment. Eur. J. Oper. Res. 258(2), 626–638 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Qin, J.: Interval type-2 fuzzy Hamy mean operators and their application in multiple criteria decision making. Granul. Comput. 2(4), 249–269 (2017)

    Google Scholar 

  21. Wang, W.Z., Liu, X.W., Qin, J.D.: Risk priorization for failure modes with extended MULTIMOORA method under interval type-2 fuzzy environment. J. Intell. Fuzzy Syst. 36(2), 1417–1429 (2019)

    Google Scholar 

  22. Zhao, H., You, J.X., Liu, H.C.: Failure mode and effect analysis using MULTIMOORA method with continuous weighted entropy under interval-valued intuitionistic fuzzy environment. Soft. Comput. 21(18), 5355–5367 (2017)

    Google Scholar 

  23. Liu, H.C., You, J.X., Ding, X.F., Su, Q.: Improving risk evaluation in FMEA with a hybrid multiple criteria decision making method. Int. J. Qual. Reliabil. Manage. 32(7), 763–765 (2015)

    Google Scholar 

  24. Liu, H.C., You, J.X., Chen, S.M., Chen, Y.Z.: An integrated failure mode and effect analysis approach for accurate risk assessment under uncertainty. IIE Trans. 48(11), 1027–1042 (2016)

    Google Scholar 

  25. Zhang, H.J., Zhou, Y., Gan, Q.H.: An extended PROMETHEE-II-based risk prioritization method for equipment failures in the geothermal power plant. Int. J. Fuzzy Syst. 21(8), 2490–2509 (2019)

    Google Scholar 

  26. Delice, E.K., Can, G.F.: A stochastic approach for failure mode and effect analysis. Rairo-Oper. Res. 51(4), 1077–1100 (2017)

    Google Scholar 

  27. Mohsen, O., Fereshteh, N.: An extended VIKOR method based on entropy measure for the failure modes risk assessment: a case study of the geothermal power plant (GPP). Saf. Sci. 92, 160–172 (2017)

    Google Scholar 

  28. Wang, Z.L., You, J.X., Liu, H.C., Wu, S.M.: Failure Mode and Effect Analysis using Soft Set Theory and COPRAS Method. Int. J. Comput. Intell. Syst. 10(1), 1002–1015 (2017)

    Google Scholar 

  29. Song, W.Y., Ming, X.G., Wu, Z.Y., Zhu, B.T.: Failure modes and effects analysis using integrated weight-based fuzzy TOPSIS. Int. J. Comput. Integr. Manuf. 26(12), 1172–1186 (2013)

    Google Scholar 

  30. Roubens, M.: Preference relations on actions and criteria in multicriteria decision-making. Eur. J. Oper. Res. 10(1), 51–55 (1982)

    MATH  Google Scholar 

  31. Pastijn, H., Leysen, J.: Constrcting an outranking relation with ORESTE. Math. Comput. Modell. 12(10–11), 1255–1268 (1989)

    Google Scholar 

  32. Liao, H.C., Wu, X.L., Liang, X.D., Xu, J.P., Herrera, F.: A new hesitant fuzzy linguistic ORESTE method for hybrid multicriteria decision making. IEEE Trans. Fuzzy Syst. 26(6), 3793–3807 (2018)

    Google Scholar 

  33. Li, J.L., Luo, L., Wu, X.L., Liao, C.C., Liao, H.C., Shen, W.W.: Prioritizing the elective surgery patient admission in a Chinese public tertiary hospital using the hesitant fuzzy linguistic ORESTE method. Appl. Soft Comput. 78, 407–419 (2019)

    Google Scholar 

  34. Wu, X.L., Liao, H.C.: An approach to quality function deployment based on probabilistic linguistic term sets and ORESTE method for multi-expert multi-criteria decision making. Inform. Fusion 43, 13–26 (2018)

    Google Scholar 

  35. Mendel, J.M., Rajati, M.R., Sussner, P.: On clarifying some definitions and notations used for type-2 fuzzy sets as well as some recommended changes. Inf. Sci. 340, 337–345 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Wu, D.R., Mendel, J.M.: Uncertainty measures for interval type-2 fuzzy sets. Inform. Sci. 177(23), 5378–5393 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Chen, S.-M., Wang, C.-Y.: Fuzzy decision making systems based on interval type-2 fuzzy sets. Inform. Sci. 242, 1–21 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Yager, R.: The power average operator. IEEE Trans. Syst. Man Cybernet. Part A 31, 724–731 (2001)

    Google Scholar 

  39. Son, M.J., Park, J.H., Ko, K.H.: Some hesitant fuzzy hamacher power-aggregation operators for multiple-attribute decision-making. Mathematics 7(7), 24–50 (2019)

    Google Scholar 

  40. Abdel-Basset, M., Saleh, M., Gamal, A., Smarandache, F.: An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number. Appl. Soft Comput. 77, 438–452 (2019)

    Google Scholar 

  41. Abdullah, L., Najib, L.: A new type-2 fuzzy set of linguistic variables for the fuzzy analytic hierarchy process. Expert Syst. Appl. 41(7), 3297–3305 (2014)

    Google Scholar 

  42. Pillay, A., Wang, J.: Modified failure mode and effects analysis using approximate reasoning. Reliabil. Eng. Syst. Saf. 79(1), 69–85 (2003)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (NSFC) (72071045, 71771051, and 71871121), MOE (Ministry of Education in China) Project of Humanities and Social Sciences (19YJC630160).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinwang Liu or Weizhong Wang.

Appendices

Appendix A: Proof of Theorem 1

Proof

Equation (6) can be proved by mathematical induction on k as follows.

  1. (1)

    For k = 1, the result of Eq. (6) is obviously.

  2. (2)

    Assume that Eq. (6) holds for k = q that is

    $$ PA - IT2TrFNs(a_{1} ,a_{2} , \ldots ,a_{q} ) = \left[ {\begin{array}{*{20}c} {\left( {\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))a_{k1}^{L} } }}{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))} }},\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))a_{k2}^{L} } }}{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))} }},} \right.} \\ {\left. {\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))a_{k3}^{L} } }}{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))} }},\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))a_{k4}^{L} } }}{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))} }};\mathop {\hbox{min} }\limits_{k = 1,2, \ldots ,q} h_{k}^{L} } \right),} \\ {\left( {\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))a_{k1}^{U} } }}{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))} }},\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))a_{k2}^{U} } }}{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))} }},} \right.} \\ {\left. {\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))a_{k3}^{U} } }}{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))} }},\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))a_{k4}^{U} } }}{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))} }};\mathop {\hbox{min} }\limits_{k = 1,2, \ldots ,q} h_{k}^{U} } \right)} \\ \end{array} } \right]. $$
  3. (3)

    Then, when \( k = q{ + }1 \), by the algorithms of IT2TrFN in Definition 2, we have

    $$ \begin{aligned} PA - & IT2TrFNs(a_{1} ,a_{2} , \ldots ,a_{q} ,a_{q + 1} ) \\ & = \left[ {\begin{array}{*{20}c} {\left( {\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))a_{k1}^{L} } }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }},\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))a_{k2}^{L} } }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }},} \right.} \\ {\left. {\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))a_{k3}^{L} } }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }},\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))a_{k4}^{L} } }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }};\mathop {\hbox{min} }\limits_{k = 1,2, \ldots ,q} h_{k}^{L} ),} \right)} \\ {\left( {\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))a_{k1}^{U} } }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }},\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))a_{k2}^{U} } }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }},} \right.} \\ {\left. {\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))a_{k3}^{U} } }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }},\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{k} ))a_{k4}^{U} } }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }};\mathop {\hbox{min} }\limits_{k = 1,2, \ldots ,q} h_{k}^{U} } \right)} \\ \end{array} } \right] \\ & \; + \left[ {\begin{array}{*{20}c} {\left( {\frac{{(1 + T(a_{q + 1} ))a_{(q + 1)1}^{L} }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{ij}^{k} ))} }},\frac{{(1 + T(a_{q + 1} ))a_{(q + 1)2}^{L} }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{ij}^{k} ))} }},} \right.} \\ {\left. {\frac{{(1 + T(a_{q + 1} ))a_{(q + 1)3}^{L} }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{ij}^{k} ))} }},\frac{{(1 + T(a_{q + 1} ))a_{(q + 1)4}^{L} }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{ij}^{k} ))} }};h_{(q + 1)}^{L} ),} \right)} \\ {\left( {\frac{{(1 + T(a_{q + 1} ))a_{(q + 1)1}^{U} }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }},\frac{{(1 + T(a_{q + 1} ))a_{(q + 1)2}^{U} }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }},} \right.} \\ {\left. {\frac{{(1 + T(a_{q + 1} ))a_{(q + 1)3}^{U} }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }},\frac{{(1 + T(a_{q + 1} ))a_{(q + 1)4}^{U} }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }};h_{(q + 1)}^{U} } \right)} \\ \end{array} } \right] \\ & = \left[ {\begin{array}{*{20}c} {\left( {\frac{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))a_{k1}^{L} } }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }},\frac{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))a_{k2}^{L} } }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }},} \right.} \\ {\left. {\frac{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))a_{k3}^{L} } }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }},\frac{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))a_{k4}^{L} } }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }};\mathop {\hbox{min} }\limits_{k = 1,2, \ldots ,q + 1} h_{k}^{L} ),} \right)} \\ {\left( {\frac{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))a_{k1}^{U} } }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }},\frac{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))a_{k2}^{U} } }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }},} \right.} \\ {\left. {\frac{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))a_{k3}^{U} } }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }},\frac{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))a_{k4}^{U} } }}{{\sum\nolimits_{k = 1}^{q + 1} {(1 + T(a_{k} ))} }};\mathop {\hbox{min} }\limits_{k = 1,2, \ldots ,q + 1} h_{k}^{U} } \right)} \\ \end{array} } \right] \\ \end{aligned}. $$

    So, when \( k = q{ + }1 \), Eq. (16) is also right.

    Consequently, according to mathematical induction given by (1) and (2), Eq. (21) holds for all k.

Appendix B: Proof of Theorem 1

Proof

  1. (1)

    As \( a_{k} = a_{0} (k = 1,2, \ldots ,q) \) , by the algorithms of IT2TrFN in Definition 5, we have

    $$ \begin{aligned} PA - IT2TrFNs(a_{1} ,a_{2} , \ldots ,a_{q} ) = & IT2TrFN - PA(a_{0} ,a_{0} , \ldots ,a_{0} ) \\ & = \left[ {\begin{array}{*{20}c} {\left( {\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{0} ))a_{01}^{L} } }}{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{0} ))} }},\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{0} ))a_{02}^{L} } }}{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{0} ))} }},} \right.} \\ {\left. {\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{0} ))a_{03}^{L} } }}{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{0} ))} }},\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{0} ))a_{04}^{L} } }}{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{0} ))} }};\mathop {\hbox{min} }\limits_{k = 1,2, \ldots ,q} h_{0}^{L} } \right),} \\ {\left( {\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{0} ))a_{01}^{U} } }}{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{0} ))} }},\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{0} ))a_{02}^{U} } }}{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{0} ))} }},} \right.} \\ {\left. {\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{0} ))a_{03}^{U} } }}{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{0} ))} }},\frac{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{0} ))a_{04}^{U} } }}{{\sum\nolimits_{k = 1}^{q} {(1 + T(a_{0} ))} }};\mathop {\hbox{min} }\limits_{k = 1,2, \ldots ,q} h_{0}^{U} } \right)} \\ \end{array} } \right] \\ \end{aligned}. $$

    Since \( a_{k} = a_{0} \) for all the k, then we can obtain \( T(a_{0} ) = 0 \). Consequently,\( \begin{aligned} PA - IT2TrFNs(a_{1} ,a_{2} , \ldots ,a_{q} ) = & PA - IT2TrFNs(a_{0} ,a_{0} , \ldots ,a_{0} ) \\ & = \left[ {\begin{array}{*{20}c} {\left( {a_{01}^{L} ,a_{02}^{L} ,} \right.} \\ {\left. {a_{03}^{L} ,a_{04}^{L} ;h_{0}^{L} } \right),} \\ {\left( {a_{01}^{U} ,a_{02}^{U} ,} \right.} \\ {\left. {a_{03}^{U} ,a_{04}^{U} ;h_{0}^{U} } \right)} \\ \end{array} } \right] = a_{0} \\ \end{aligned} \)

  2. (2)

    Assume that \( c_{0} = a_{\hbox{max} } = \hbox{max} (a_{1} ,a_{2} , \ldots ,a_{q} ) \) and \( d_{0} = a_{\hbox{min} } = \hbox{min} (a_{1} ,a_{2} , \ldots ,a_{q} ) \), then we can have

    $$ \begin{aligned} c_{0} = & PA - IT2TrFNs(c_{0} ,c_{0} , \ldots ,c_{0} ) \\ & \le PA - IT2TrFNs(a_{1} ,a_{2} , \ldots ,a_{q} ) \\ & \le PA - IT2TrFNs(d_{0} ,d_{0} , \ldots ,d_{0} ) \\ & = d_{0} \\ \end{aligned}. $$

    Therefore, we can get \( a_{\hbox{min} } \le PA - IT2TrFNs(a_{1} ,a_{2} , \ldots ,a_{q} ) \le a_{\hbox{max} }. \)

  3. (3)

    Since \( a_{i} \le b_{j} (i,j = 1,2, \ldots ,q) \) and PA operator is an Augment function, then

    $$ IT2TrFN - PA(a_{1} ,a_{2} , \ldots ,a_{q} ) \le IT2TrFN - PA(b_{1} ,b_{2} , \ldots ,b_{q} ). $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Liu, X. & Wang, W. An Extended Interval Type-2 Fuzzy ORESTE Method for Risk Analysis in FMEA. Int. J. Fuzzy Syst. 23, 1379–1395 (2021). https://doi.org/10.1007/s40815-020-01034-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-01034-1

Keywords

Navigation