Skip to main content
Log in

Moisture Mode Theory’s Contribution to Advances in our Understanding of the Madden-Julian Oscillation and Other Tropical Disturbances

  • Monsoons and Climate (Y Ming, Section Editor)
  • Published:
Current Climate Change Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Our understanding of the Madden-Julian Oscillation (MJO) and other tropical motion systems has significantly improved in recent years. This article reviews the contribution of moisture mode theory to this progress.

Recent Findings

Two realizations have contributed significantly to our understanding of the MJO: (1) Free tropospheric water vapor plays an important role in the occurrence and organization of tropical deep convection. (2) The latent heat released in convection is quickly transported around the tropics by gravity waves, the physical mechanism underpinning the weak temperature gradient (WTG) approximation. Simple models of the tropics that include (1) and (2) revealed the existence of moisture modes, waves in which water vapor plays a dominant role in their evolution. It was soon recognized that the MJO exhibits properties of moisture modes. The ensuing development and application of the so-called moisture mode theory of the MJO have led to the recognition that horizontal and vertical moisture advections are central to the propagation of the MJO, and that cloud-radiative heating is at least partially responsible for its maintenance. Moisture mode theory has also been applied to understand the MJO’s seasonality, Maritime Continent transit, and response to increasing CO2. Recent work suggests that moisture mode theory can be extended beyond the MJO in order to explain the observed diversity of tropical motion systems.

Summary

A mounting body of evidence indicates that the MJO has properties of moisture modes. Extension of the theory beyond the MJO may help us further understand the processes that drive large-scale tropical circulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Matsuno T. Quasi-geostrophic motions in the equatorial area. J Meteor Soc Jpn 1966;44:25–43.

    Google Scholar 

  2. Kiladis G N, Wheeler M C, Haertel P T, Straub K H, Roundy P E. Convectively coupled equatorial waves. Rev Geophys. 2009:1–42.

  3. Lau K-H, Lau N-C. Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon Wea Rev 1990;118:1888–1913.

    Google Scholar 

  4. Madden R, Julian P. Further evidence of Global-Scale 5-Day Pressure Waves. J Atmos Sci 1972;29(8):1464–1469.

    Google Scholar 

  5. Zhang C. Madden–Julian oscillation: bridging weather and climate. Bull Amer Meteor Soc 2013; 94(12):1849–1870.

    Google Scholar 

  6. Stan C, Straus D M, Frederiksen J S, Lin H, Maloney E D, Schumacher C. Review of tropical-extratropical teleconnections on intraseasonal time scales. Rev Geophys 2017;55(4):902–937.

    Google Scholar 

  7. Xie Y-B, Chen S-J, Zhang I-L, Hung Y-L. A preliminarily statistic and synoptic study about the basic currents over Southeastern Asia and the initiation of typhoon (in Chinese). Acta Meteor Sin 1963; 33:206–217.

    Google Scholar 

  8. Madden R, Julian P. Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 1971;28:702–708.

    Google Scholar 

  9. Li T, Wang L, Peng M, Wang B, Zhang C, Lau W, Kuo H-C. A paper on the tropical intraseasonal oscillation published in 1963 in a chinese journal. Bull Am Meteorol Soc 2018;99 (9):1765–1779.

    Google Scholar 

  10. Zhang C, Adames A F, Khouider B, Wang B, Yang D. Four theories of the Madden-Julian oscillation. Rev Geophys 2020;58(3):e2019RG000685.

    CAS  Google Scholar 

  11. Slingo JM, Sperber KR, Boyle JS, Ceron J-P, Dix M, Dugas B, Ebisuzaki W, Fyfe J, Gregory D, Gueremy J-F, Hack J, Harzallah A, Inness P, Kitoh A, Lau WK-M, McAvaney B, Madden R, Matthews A, Palmer TN, Parkas C-K, Randall D, Renno N. Intraseasonal oscillations in 15 atmospheric general circulation models: results from an AMIP diagnostic subproject. Clim Dyn 1996; 12:325–357.

    Google Scholar 

  12. Hung M-P, Lin J-L, Wang W, Kim D, Shinoda T, Weaver S J. MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J Clim 2013;26(17):6185–6214.

    Google Scholar 

  13. Randall D A. Beyond deadlock. Geophys Res Lett 2013;40(22):5970–5976.

    Google Scholar 

  14. Raymond D J. A new model of the Madden–Julian oscillation. J Atmos Sci 2001;58(18):2807–2819.

    Google Scholar 

  15. Jiang X, Adames A F, Kim D, Maloney E D, Lin H, Kim H, Zhang C, DeMott C A, Klingaman N P. Fifty years of research on the Madden-Julian oscillation: recent progress, challenges, and perspectives. J Geophys Res Atmosph 2020;125(17):e2019JD030911.

    Google Scholar 

  16. Sobel A H, Nilsson J, Polvani L M. The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci. 2001;58:3650–3665.

    Google Scholar 

  17. Raymond D J, Fuchs Z. Moisture modes and the Madden–Julian oscillation. J Clim 2009;22: 3031–3046.

    Google Scholar 

  18. Sobel A, Maloney E. Moisture modes and the eastward propagation of the MJO. J Atmos Sci 2013;70:187–192.

    Google Scholar 

  19. Kim D, Lee M-I, Kim D, Schubert S, Waliser D, Tian B. Representation of tropical subseasonal variability of precipitation in global reanalyses. Clim Dyn 2014;43(1-2):517–534.

    CAS  Google Scholar 

  20. Kiranmayi L, Maloney E D. Intraseasonal moist static energy budget in reanalysis data. J Geophys Res 2011;116(D21):1–12.

    Google Scholar 

  21. DeMott C A, Stan C, Randall D A, Branson M D. Intraseasonal variability in coupled GCMs: the roles of ocean feedbacks and model physics. J Clim 2014;27(13):4970–4995.

    Google Scholar 

  22. Kim D, Kug J-S, Sobel A H. Propagating versus nonpropagating Madden–Julian oscillation events. J Clim 2014;27:111–125.

    Google Scholar 

  23. Pritchard M S, Bretherton C S. Causal evidence that rotational moisture advection is critical to the superparameterized Madden–Julian oscillation. J Atmos Sci 2014;71(2):800–815.

    Google Scholar 

  24. Kim D, Ahn M-S, Kang I-S, Del Genio A D. Role of longwave cloud–radiation feedback in the simulation of the Madden–Julian oscillation. J Clim 2015;28:6979–6994.

    Google Scholar 

  25. Ma D, Kuang Z. A mechanism-denial study on the Madden-Julian oscillation with reduced interference from mean state changes. Geophys Res Lett 2016;43(6):2989–2997.

    Google Scholar 

  26. Adames A F. Precipitation budget of the Madden-Julian oscillation. J Atmos Sci 2017;74: 1799–1817.

    Google Scholar 

  27. Yasunaga K, Yokoi S, Inoue K, Mapes B E. Space-time spectral analysis of the moist static energy budget equation. J Clim 2019;32(2):501–529.

    Google Scholar 

  28. Orbe C, Van Roekel L, Adames A F, Dezfuli A, Fasullo J, Gleckler P J, Lee J, Li W, Nazarenko L, Schmidt G A, Sperber K R, Zhao M. Representation of modes of variability in six U.S. climate models. J Clim 2020;33(17):7591–7617.

    Google Scholar 

  29. Ahn M-S, Kim D, Kang D, Lee J, Sperber K R, Gleckler P J, Jiang X, Ham Y-G, Kim H. MJO propagation across the maritime continent: are cmip6 models better than cmip5 models?. Geophys Res Lett 2020;47(11):e2020GL087250.

    Google Scholar 

  30. Kim H, Vitart F, Waliser D E. Prediction of the Madden-Julian oscillation: a review. J Clim 2018;11;31(23):9425–9443.

    Google Scholar 

  31. Kim H, Janiga M A, Pegion K. MJO propagation processes and mean biases in the subx and s2s reforecasts. J Geophys Res Atmosph 2019;124(16):9314–9331.

    Google Scholar 

  32. Adames A F, Kim D, Clark S K, Ming Y, Inoue K. Scale analysis of moist thermodynamics in a simple model and the relationship between moisture modes and gravity waves. J Atmos Sci 2019;76 (12):3863–3881.

    Google Scholar 

  33. Ahmed F, Neelin J D, Adames A F. Quasi-equilibrium and weak temperature gradient balances in an equatorial beta-plane model. J Atmos Sci. 2020:revised.

  34. Maloney E D, Adames A F, Bui H X. Madden-Julian oscillation changes under anthropogenic warming. Nat Clim Chang 2019;9(1):26–33.

    Google Scholar 

  35. Madden R A. Seasonal variations of the 40-50 day oscillation in the tropics. J Atmos Sci 1986;43 (24):3138–3158.

    Google Scholar 

  36. Knutson T R, Weickmann K M. 30-60 day atmospheric oscillations: composite life cycles of convection and circulation anomalies. Mon Wea Rev 1987;115(7):1407–1436.

    Google Scholar 

  37. Gill A E. Some simple solutions for heat-induced tropical circulation. Quart J Roy Meteor Soc 1980;106(449):447– 462.

    Google Scholar 

  38. Adames A F, Wallace J M. Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J Atmos Sci 2014;71(6):2007–2026.

    Google Scholar 

  39. Monteiro J M, Adames A F, Wallace J M, Sukhatme J S. Interpreting the upper level structure of the Madden-Julian oscillation. Geophys Res Lett 2014;41(24):9158–9165.

    Google Scholar 

  40. Inoue K, Back L E. Column-integrated moist static energy budget analysis on various time scales during TOGA COARE. J Atmos Sci 2015;72:1856–1871.

    Google Scholar 

  41. Schumacher C, Houze R A, Kraucunas I. The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J Atmos Sci 2004;61:1341–1358.

    Google Scholar 

  42. Lau K-M, Wu H-T. Characteristics of precipitation, cloud, and latent heating associated with the Madden–Julian oscillation. J Clim 2010;23(3):504–518.

    Google Scholar 

  43. Mori M, Watanabe M. The growth and triggering mechanisms of the PNA: a MJO-PNA Coherence. J Meteor Soc Jpn 2008;86(1):213–236.

    Google Scholar 

  44. Seo K-H, Lee H-J. Mechanisms for a PNA-like teleconnection pattern in response to the MJO. J Atmos Sci 2017;74(6):1767–1781.

    Google Scholar 

  45. Tseng K-C, Maloney E, Barnes E. The consistency of MJO teleconnection patterns: an explanation using linear Rossby Wave Theory. J Clim 2019;32(2):531–548.

    Google Scholar 

  46. Bond N A, Vecchi G A. The influence of the MaddenJulian oscillation on precipitation in Oregon and Washington*. Weather Forecast 2003;18(4):600–613.

    Google Scholar 

  47. Guan B, Waliser D E, Molotch N P, Fetzer E J, Neiman P J. Does the Madden-Julian Oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada?. Mon Weather Rev 2012; 140(2):325–342.

    Google Scholar 

  48. Baggett C F, Nardi K M, Childs S J, Zito S N, Barnes E A, Maloney E D. Skillful subseasonal forecasts of weekly tornado and hail activity using the Madden-Julian oscillation. J Geophys Res Atmosph 2018;123(22):12,661–12,675.

    Google Scholar 

  49. Henderson S A, Maloney E D, Barnes E A. The influence of the Madden-Julian oscillation on Northern Hemisphere winter blocking. J Clim 2016;29(12):4597–4616.

    Google Scholar 

  50. Cassou C. Intraseasonal interaction between the Madden-Julian oscillation and the North Atlantic oscillation. Nature 2008;455(7212):523–527.

    CAS  Google Scholar 

  51. Lin H, Brunet G, Derome J. An observed connection between the North Atlantic Oscillation and the MaddenJulian Oscillation. J Clim 2009;22(2):364–380.

    Google Scholar 

  52. Wang J, Kim H-M, Chang E K M, Son S-W. Modulation of the MJO and North Pacific storm track relationship by the qbo. J Geophys Res Atmosph 2018;123(8):3976–3992.

    Google Scholar 

  53. Henderson S A, Maloney E D. The impact of the Madden-Julian oscillation on high-latitude winter blocking during El NioSouthern Oscillation Events. J Clim 2018;31(13):5293–5318.

    Google Scholar 

  54. Toms B A, Barnes E A, Maloney E D, van den Heever S C. The global teleconnection signature of the Madden-Julian oscillation and its modulation by the quasi-biennial oscillation. J Geophys Res Atmosph 2020;125(7):e2020JD032653.

    Google Scholar 

  55. Johnson R H, Rickenbach T M, Rutledge S A, Ciesielski P E, Schubert W H. Trimodal characteristics of tropical convection. J Clim August 1999;12(8):2397–2418.

  56. Emanuel K A. Atmospheric convection: Oxford University Press on Demand; 1994.

  57. Donner L J, Phillips V T. Boundary layer control on convective available potential energy: implications for cumulus parameterization. J Geophys Res Atmosph. 2003; 108(D22).

  58. Brown R G, Zhang C. Variability of midtropospheric moisture and its effect on cloud-top height distribution during toga coare*. J Atmos Sci 1997;54(23):2760–2774.

    Google Scholar 

  59. Bretherton C S, Peters M E, Back L E. Relationships between water vapor path and precipitation over the tropical oceans. J Clim 2004;17:1517–1528.

    Google Scholar 

  60. Holloway C E, Neelin J D. Moisture vertical structure, column water vapor, and tropical deep convection. J Atmos Sci 2009;66(6):1665–1683.

    Google Scholar 

  61. Lucas C, Zipser E J, Lemone M A. Vertical velocity in oceanic convection off tropical Australia. J Atmos Sci 1994;51(21):3183–3193.

    Google Scholar 

  62. Ahmed F, Neelin J D. Reverse engineering the tropical precipitationbuoyancy relationship. J Atmos Sci 2018;75(5):1587–1608.

    Google Scholar 

  63. Ahmed F, Adames A F, Neelin J D. Deep convective adjustment of temperature and moisture. J Atmos Sci 2020;77(6):2163–2186.

    Google Scholar 

  64. Emanuel K A. The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J Atmos Sci 1995;52(22):3960–3968.

    Google Scholar 

  65. Raymond D J. In: Smith R K, editor. Boundary layer quasi-equilibrium (blq). Dordrecht: Springer Netherlands; 1997, pp. 387–397.

  66. Emanuel K. Inferences from simple models of slow, convectively coupled processes. J Atmos Sci 2019;76(1):195–208.

    Google Scholar 

  67. Bretherton C S, Smolarkiewicz P K. Gravity waves, compensating subsidence and detrainment around cumulus clouds. J Atmos Sci 1989;46(6):740–759.

    Google Scholar 

  68. Mapes B E, Houze R A. Diabatic divergence profiles in Western Pacific mesoscale convective systems. J Atmos Sci May 1995;52(10):1807–1828.

  69. Raymond D J, Zeng X. Modelling tropical atmospheric convection in the context of the weak temperature gradient approximation. Q J R Meteorol Soc 2005;131(608):1301–1320.

    Google Scholar 

  70. Emanuel K, Wing A A, Vincent E M. Radiative-convective instability. J Adv Model Earth Syst 2014;6(1):75–90.

    Google Scholar 

  71. Adames A F, Kim D. The MJO as a dispersive, convectively coupled moisture wave: theory and observations. J Atmos Sci 2016;73:913–941.

    Google Scholar 

  72. Mapes B E. Gregarious tropical convection. J Atmos Sci 1993;50(13):2026–2037.

    Google Scholar 

  73. Nicholls M E, Pielke R A, Cotton W R. Thermally forced gravity waves in an atmosphere at rest. J Atmos Sci 1991;48(16):1869–1884.

    Google Scholar 

  74. Herman M J, Raymond D J. Wtg cloud modeling with spectral decomposition of heating. J Adv Model Earth Syst 2014;6(4):1121–1140.

    Google Scholar 

  75. Ruppert J H, Hohenegger C. Diurnal circulation adjustment and organized deep convection. J Clim 2018;31(12):4899–4916.

    Google Scholar 

  76. Yano J-I, Bonazzola M. Scale analysis for large-scale tropical atmospheric dynamics. J Atmos Sci 2009;66:159– 172.

    Google Scholar 

  77. de Szoeke S P. Variations of the moist static energy budget of the tropical Indian Ocean atmospheric boundary layer. J Atmos Sci 2018;75(5):1545–1551.

    Google Scholar 

  78. Hansen Z R, Back L E, Zhou P. Boundary layer quasi-equilibrium limits convective intensity enhancement from the diurnal cycle in surface heating. J Atmos Sci 2019;77(1):217–237. https://doi.org/10.1175/JAS-D-18-0346.1.

    Article  Google Scholar 

  79. Yu J-Y, Neelin J D. Modes of tropical variability under convective adjustment and the MaddenJulian oscillation. Part II: numerical results. J Atmos Sci 1994;51(13):1895–1914.

    Google Scholar 

  80. Kemball-Cook S R, Weare B C. The onset of convection in the Madden-Julian oscillation. J Clim 2001;14:780–793.

    Google Scholar 

  81. Myers D S, Waliser D E. Three-dimensional water vapor and cloud variations associated with the Madden–Julian oscillation during Northern Hemisphere winter. J Clim 2003;16(6):929–950.

    Google Scholar 

  82. Yasunaga K, Mapes B. Differences between more divergent and more rotational types of convectively coupled equatorial waves. Part I: Space-time spectral analyses. J Atmos Sci January 2012;69(1):3–16.

  83. Ahmed F, Schumacher C. Spectral signatures of moisture-convection feedbacks over the Indian Ocean. J Atmos Sci 2018;75(6):1995–2015.

    Google Scholar 

  84. Lin J-L, Kiladis G N, Mapes B E, Weickmann K M, Sperber K R, Lin W, Wheeler M C, Schubert S D, Del Genio A, Donner L J, et al. Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J Clim 2006;19(12):2665–2690.

    Google Scholar 

  85. Yanai M, Esbensen S, Chu J. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci 1973;30:611–627.

    Google Scholar 

  86. Benedict J J, Randall D A. Observed characteristics of the MJO relative to maximum rainfall. J Atmos Sci 2007;64(7):2332–2354.

    Google Scholar 

  87. Adames A F, Wallace J M. Three-dimensional structure and evolution of the moisture field in the MJO. J Atmos Sci 2015;72(10):3733–3754.

    Google Scholar 

  88. Chikira M. Eastward-propagating intraseasonal oscillation represented by Chikira–Sugiyama cumulus parameterization. Part II: Understanding moisture variation under weak temperature gradient balance. J Atmos Sci 2014;71(2):615–639.

    Google Scholar 

  89. Adames A F, Powell S W, Ahmed F, Mayta V C, Neelin J D. Tropical precipitation evolution in a buoyancy-budget framework. J Atmos Sci 01 Feb. 2021;78(2):509–528.

  90. Maloney E D. The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J Clim 2009;22(3):711–729.

    Google Scholar 

  91. Sobel A, Wang S, Kim D. Moist static energy budget of the MJO during DYNAMO. J Atmos Sci 2014;71:4276–4291.

    Google Scholar 

  92. Wolding B O, Maloney E D. Objective diagnostics and the Madden-Julian Oscillation. Part II: Application to moist static energy and moisture budgets. J Clim 2015;28(19):7786–7808.

    Google Scholar 

  93. Wolding B O, Maloney E D, Branson M. Vertically resolved weak temperature gradient analysis of the Madden-Julian oscillation in SP-CESM. J. Adv. Model. Earth Syst. 2016.

  94. Janiga M A, Zhang C. MJO moisture budget during dynamo in a cloud-resolving model. J Atmos Sci 2016;73:2257–2278.

    Google Scholar 

  95. Andersen J A, Kuang Z. Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J Clim 2012;25(8):2782–2804.

    Google Scholar 

  96. Arnold N P, Randall D A. Global-scale convective aggregation: implications for the Madden-Julian oscillation. J. Adv. Model. Earth Syst. 2015; n/a–n/a.

  97. Shi X, Kim D, Adames A F, Sukhatme J. Wishe-moisture mode in an aquaplanet simulation. J Adv Model Earth Syst 2018;10(10):2393–2407.

    Google Scholar 

  98. Khairoutdinov M F, Emanuel K. Intraseasonal variability in a cloud-permitting near-global equatorial aquaplanet model. J Atmos Sci 2018;75(12):4337–4355.

    Google Scholar 

  99. Benedict J J, Medeiros B, Clement A C, Olson J G. Investigating the role of cloud-radiation interactions in subseasonal tropical disturbances. Geophys Res Lett 2020;47(9):e2019GL086817.

    Google Scholar 

  100. Adames A F, Kim D, Sobel A H, Del Genio A, Wu J. Characterization of moist processes associated with changes in the propagation of the MJO with increasing CO2. J Adv Model Earth Syst 2017;9(8): 2946–2967.

    Google Scholar 

  101. de Szoeke S P, Edson J B, Marion J R, Fairall C W, Bariteau L. The MJO and air-sea interaction in toga coare and dynamo. J Clim 2015;28(2):597–622.

    Google Scholar 

  102. Jiang X, Maloney E, Su H. Large-scale controls of propagation of the Madden-Julian oscillation. npj Clim Atmosph Sci 2020;3(1):29.

    Google Scholar 

  103. Feng J, Li T, Zhu W. Propagating and nonpropagating MJO events over Maritime Continent*. J Clim 2015;28(21):8430–8449.

    Google Scholar 

  104. Gonzalez A O, Slocum C J, Taft R K, Schubert W H. Dynamics of the ITCZ boundary layer. J Atmos Sci 2016;73(4):1577–1592.

    Google Scholar 

  105. Ahn M-S, Kim D, Ham Y-G, Park S. Role of Maritime Continent land convection on the mean state and MJO propagation. J Clim 2020;33(5):1659–1675.

    Google Scholar 

  106. DeMott C A, Klingaman N P, Tseng W-L, Burt M A, Gao Y, Randall D A. The convection connection: how ocean feedbacks affect tropical mean moisture and MJO propagation. J Geophys Res Atmosph 2019;124(22):11910–11931.

    Google Scholar 

  107. Kim H-M. The impact of the mean moisture bias on the key physics of MJO propagation in the ECMWF reforecast. J Geophys Res Atmosph 2017;122(15):7772–7784.

    Google Scholar 

  108. Lim Y, Son S-W, Kim D. MJO prediction skill of the subseasonal-to-seasonal prediction models. J Clim 2018;31(10):4075–4094.

    Google Scholar 

  109. Weber N J, Mass C F. Evaluating CFSv2 subseasonal forecast skill with an emphasis on tropical convection. Mon Weather Rev 2017;145(9):3795–3815.

    Google Scholar 

  110. Zhang C, Ling J. Barrier effect of the Indo-Pacific Maritime Continent on the MJO: perspectives from tracking MJO Precipitation. J Clim 2017;30(9):3439–3459.

    Google Scholar 

  111. Kim D, Kim H, Lee M-I. Why does the MJO detour the maritime continent during austral summer?. Geophys Res Lett 2017;44(5):2579–2587.

    Google Scholar 

  112. DeMott C A, Klingaman N P, Woolnough S J. Atmosphere-ocean coupled processes in the Madden-Julian oscillation. Rev Geophys 2015;53(4):1099–1154.

    Google Scholar 

  113. Lau K-M, Chan P H. Aspects of the 40’50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon Weather Rev 1986;114(7):1354–1367.

    Google Scholar 

  114. Wang B, Rui H. Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975’1985. Meteorog Atmos Phys 1990;44(1):43–61.

    Google Scholar 

  115. Lawrence D M, Webster P J. The boreal summer intraseasonal oscillation: relationship between northward and eastward movement of convection. J Atmos Sci May 2002;59(9):1593– 1606.

  116. Jiang X, Adames A F, Zhao M, Waliser D, Maloney E. A unified moisture mode framework for seasonality of the madden-julian oscillation. J Clim 2018;31(11):4215–4224.

    Google Scholar 

  117. Yang Q, Khouider B, Majda A J, De La Chevrotière M. Northward propagation, initiation, and termination of boreal summer intraseasonal oscillations in a zonally symmetric model. J Atmos Sci 2019; 76(2):639–668.

    Google Scholar 

  118. Adames A F, Wallace J M, Monteiro J M. Seasonality of the structure and propagation characteristics of the MJO. J Atmos Sci 2016;0:null.

    Google Scholar 

  119. Wang T, Li T. Diagnosing the column-integrated moist static energy budget associated with the northward-propagating boreal summer intraseasonal oscillation. Clim Dyn 2020;54(11):4711–4732.

    Google Scholar 

  120. Maloney E D, Esbensen S K. The amplification of East Pacific Madden-Julian oscillation convection and wind anomalies during JuneNovember. J Clim 2003;16(21):3482–3497.

    Google Scholar 

  121. Neelin J D, Held I M. Modeling tropical convergence based on the moist static energy budget. Mon Wea Rev 1987;115:3–12.

    Google Scholar 

  122. Raymond D J, Sessions S L, Sobel A H, Fuchs Z. The Mechanics of Gross Moist Stability. J. Adv. Model. Earth Syst. 2009; 1.

  123. Fuchs Z, Raymond D J. Large-scale modes in a rotating atmosphere with radiative-convective instability and WISHE. J Atmos Sci 2005;62:4084–4094.

    Google Scholar 

  124. Sakaeda N, Roundy P E. Gross moist stability and the Madden’Julian oscillation in reanalysis data. Q J R Meteorol Soc 2016;142(700):2740–2757.

    Google Scholar 

  125. Inoue K, Back L E. Gross moist stability analysis: assessment of satellite-based products in the GMS plane. J Atmos Sci 2017;74(6):1819–1837.

    Google Scholar 

  126. Inoue K, Adames A F, Yasunaga K. Vertical velocity profiles in convectively coupled equatorial waves and MJO: new diagnoses of vertical velocity profiles in the wavenumberfrequency domain. J Atmos Sci 2020; 77(6):2139–2162.

    Google Scholar 

  127. Hannah W M, Maloney E D. The role of moisture’convection feedbacks in simulating the Madden-Julian oscillation. J Clim 2011;24(11):2754–2770.

    Google Scholar 

  128. Hannah W M, Maloney E D. The moist static energy budget in NCAR CAM5 hindcasts during DYNAMO. J Adv Model Earth Syst 2014;6(2):420–440.

    Google Scholar 

  129. Benedict J J, Maloney E D, Sobel A H, Frierson D M W. Gross moist stability and MJO simulation skill in three full-physics GCMs. J Atmos Sci 2014;71(9):3327–3349.

    Google Scholar 

  130. Jiang X, Zhao M, Maloney E D, Waliser D E. Convective moisture adjustment time scale as a key factor in regulating model amplitude of the Madden-Julian oscillation. Geophys Res Lett 2016;43: 10,412–10,419. 2016GL070898.

    Google Scholar 

  131. Ahn M-S, Kim D, Sperber K R, Kang I-S, Maloney E, Waliser D, Hendon H, on behalf of WGNE MJO Task Force. Mjo simulation in cmip5 climate models: MJO skill metrics and process-oriented diagnosis. Clim Dyn 2017;49(11):4023–4045.

    Google Scholar 

  132. Kuang Z. The wavelength dependence of the gross moist stability and the scale selection in the instability of column-integrated moist static energy. J Atmos Sci 2011;68(1):61–74.

    Google Scholar 

  133. Fuchs Z, Raymond D J. A simple model of intraseasonal oscillations. J Adv Model Earth Syst 2017;9(2):1195–1211.

    Google Scholar 

  134. Wang S, Sobel A H, Nie J. Modeling the MJO in a cloud-resolving model with parameterized large-scale dynamics: vertical structure, radiation, and horizontal advection of dry air. J Adv Model Earth Syst 2016;8(1):121–139.

    Google Scholar 

  135. Stechmann S N, Hottovy S. Asymptotic models for tropical intraseasonal oscillations and geostrophic balance. J Clim 2020;33(11):4715–4737.

    Google Scholar 

  136. Wolding B O, Maloney E D, Henderson S, Branson M. Climate change and the Madden-Julian oscillation: a vertically resolved weak temperature gradient analysis. J Adv Model Earth Syst 2017;9(1): 307–331.

    Google Scholar 

  137. Rushley S S, Kim D, Adames A F. Changes in the MJO under greenhouse gas-induced warming in CMIP5 Models. J Clim 2019;32(3):803–821.

    Google Scholar 

  138. Bui H X, Maloney E D. Changes in Madden-Julian oscillation precipitation and wind variance under global warming. Geophys Res Lett 2018;45(14):7148–7155.

    Google Scholar 

  139. Hsiao W-T, Maloney E D, Barnes E A. Investigating recent changes in MJO precipitation and circulation in two reanalyses. Geophys Res Lett. 2020.

  140. Zhou W, Yang D, Xie S-P, Ma J. Amplified Madden-Julian oscillation impacts in the Pacific-North America region. Nat Clim Chang 2020;10(7):654–660.

    CAS  Google Scholar 

  141. Mapes B E. Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J Atmos Sci 2000;57(10):1515–1535.

    Google Scholar 

  142. Kuang Z. A moisture-stratiform instability for convectively coupled waves. J Atmos Sci 2008;65 (3):834–854.

    Google Scholar 

  143. Adames A F, Ming Y. Interactions between water vapor and potential vorticity in synoptic-scale monsoonal disturbances: moisture vortex instability. J Atmos Sci 2018;75(6):2083– 2106.

    Google Scholar 

  144. Roundy P E. Observed structure of convectively coupled waves as a function of equivalent depth: Kelvin waves and the Madden-Julian Oscillation. J Atmos Sci 2012;69(7):2097– 2106.

    Google Scholar 

  145. Roundy P E. The spectrum of convectively coupled Kelvin waves and the MaddenJulian oscillation in regions of low-level easterly and westerly background flow. J Atmos Sci 2012;69(7):2107–2111.

    Google Scholar 

  146. Roundy P E. Regression analysis of zonally narrow components of the MJO. J Atmos Sci 2014; 71(11):4253–4275.

    Google Scholar 

  147. Roundy P E. Interpretation of the spectrum of eastward-moving tropical convective anomalies. Q J R Meteorol Soc 2020;146(727):795–806.

    Google Scholar 

  148. Adames A F. Interactions between water vapor, potential vorticity and vertical wind shear in quasi-geostrophic motions: implications for rotational tropical motion systems. J Atmos Sci 2021;78(3):903–923.

    Google Scholar 

  149. Diaz M, Boos W R. Monsoon depression amplification by moist barotropic instability in a vertically sheared environment. Q J R Meteorol Soc 2019;145(723):2666–2684.

    Google Scholar 

  150. Russell J O H, Aiyyer A, Dylan White J. African easterly wave dynamics in convection-permitting simulations: rotational stratiform instability as a conceptual model. J Adv Model Earth Syst 2020;12(1): e2019MS001706.

    Google Scholar 

  151. Rydbeck A V, Maloney E D. On the convective coupling and moisture organization of East Pacific easterly waves. J Atmos Sci 2015;72:3850–3870.

    Google Scholar 

  152. Wolding B, Dias J, Kiladis G, Ahmed F, Powell S W, Maloney E, Branson M. Interactions between moisture and tropical convection. Part I: the coevolution of moisture and convection. J Atmos Sci 2020;77(5):1783–1799.

    Google Scholar 

  153. Gonzalez A O, Jiang X. Distinct propagation characteristics of intraseasonal variability over the tropical West Pacific. J Geophys Res Atmosph 2019;124(10):5332–5351.

    Google Scholar 

  154. Son S-W, Lim Y, Yoo C, Hendon H H, Kim J. Stratospheric control of the MaddenJulian oscillation. J Clim 2017;30(6):1909–1922.

    Google Scholar 

  155. Pritchard M S, Yang D. Response of the superparameterized Madden-Julian oscillation to extreme climate and basic state variation challenges a moisture mode view. J Clim 2016;29(13):4995–5008.

  156. Jiang X. Key processes for the eastward propagation of the Madden-Julian oscillation based on multimodel simulations. J Geophys Res Atmosph 2017;122(2):755–770.

    Google Scholar 

  157. Ren P, Kim D, Ahn M-S, Kang D, Ren H-L. Intercomparison of MJO column moist static energy and water vapor budget among six modern reanalysis products. J Clim. 2021; 1–65.

  158. Dellaripa E M R, Maloney E D. Analysis of MJO wind-flux feedbacks in the Indian Ocean using RAMA buoy observations. J Meteorol Soc Jpn Ser II 2015;93A:1–20.

    Google Scholar 

  159. Takahashi C, Sato N, Seiki A, Yoneyama K, Shirooka R. Projected future change of mjo and its extratropical teleconnection in East Asia during the northern winter simulated in IPCC ar4 models. SOLA 2011;7:201–204.

    Google Scholar 

  160. Majda A J, Stechmann S N. The skeleton of tropical intraseasonal oscillations. Proc Natl Acad Sci USA 2009;106(21):8417–8422.

    CAS  Google Scholar 

  161. Yano J-I, Tribbia J J. Tropical atmospheric Madden-Julian oscillation: a strongly nonlinear free solitary Rossby wave?. J Atmos Sci 2017;74(10):3473–3489.

    Google Scholar 

  162. Kim J-E, Zhang C. Core dynamics of the MJO. J Atmos Sci 2021;78(1):229–248.

    Google Scholar 

  163. Yang D, Ingersoll A P. Triggered convection, gravity waves, and the MJO: a shallow-water model. J Atmos Sci 2013;70:2476–2486.

    Google Scholar 

Download references

Acknowledgements

The authors thank the editor, Dr. Yi Ming, for inviting this review. We also thank Brian Mapes and an anonymous reviewer for comments that helped improve the contents of the manuscript. Conversations with Brandon Wolding, Daehyun Kim, and Hannah Zanowski helped improve the presentation of Fig. 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric D. Maloney.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection on Monsoons and Climate

Supplementary Information

ESM 1

(PDF 108 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adames, Á.F., Maloney, E.D. Moisture Mode Theory’s Contribution to Advances in our Understanding of the Madden-Julian Oscillation and Other Tropical Disturbances. Curr Clim Change Rep 7, 72–85 (2021). https://doi.org/10.1007/s40641-021-00172-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40641-021-00172-4

Keywords

Navigation