Skip to main content
Log in

Hydrogel-mediated delivery of microRNA-92a inhibitor polyplex nanoparticles induces localized angiogenesis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Localized stimulation of angiogenesis is an attractive strategy to improve the repair of ischemic or injured tissues. Several microRNAs (miRNAs) such as miRNA-92a (miR-92a) have been reported to negatively regulate angiogenesis in ischemic disease. To exploit the clinical potential of miR-92a inhibitors, safe and efficient delivery needs to be established. Here, we used deoxycholic acid-modified polyethylenimine polymeric conjugates (PEI-DA) to deliver a locked nucleic acid (LNA)-based miR-92a inhibitor (LNA-92a) in vitro and in vivo. The positively charged PEI-DA conjugates condense the negatively charged inhibitors into nano-sized polyplexes (135 ± 7.2 nm) with a positive net charge (34.2 ± 10.6 mV). Similar to the 25 kDa-branched PEI (bPEI25) and Lipofectamine RNAiMAX, human umbilical vein endothelial cells (HUVECs) significantly internalized PEI-DA/LNA-92a polyplexes without any obvious cytotoxicity. Down-regulation of miR-92a following the polyplex-mediated delivery of LNA-92a led to a substantial increase in the integrin subunit alpha 5 (ITGA5), the sirtuin-1 (SIRT1) and Krüppel-like factors (KLF) KLF2/4 expression, formation of capillary-like structures by HUVECs, and migration rate of HUVECs in vitro. Furthermore, PEI-DA/LNA-92a resulted in significantly enhanced capillary density in a chicken chorioallantoic membrane (CAM) model. Localized angiogenesis was substantially induced in the subcutaneous tissues of mice by sustained release of PEI-DA/LNA-92a polyplexes from an in situ forming, biodegradable hydrogel based on clickable poly(ethylene glycol) (PEG) macromers. Our results indicate that PEI-DA conjugates efficiently deliver LNA-92a to improve angiogenesis. Localized delivery of RNA interference (RNAi)-based therapeutics via hydrogel-laden PEI-DA polyplex nanoparticles appears to be a safe and effective approach for different therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article and its supplementary information file, and are available from the corresponding author upon request.

Code availability

The quantification of tubular structures was done using WimTube software https://www.wimasis.com/en/WimTube.

Abbreviations

bPEI25 :

25 KDa-branched PEI

bPEI1.8 :

1.8 KDa-branched PEI

DA:

Deoxycholic acid

PEI-DA:

Polyethylenimine-deoxycholic acid

PEG:

Poly(ethylene glycol)

DCC:

Dicyclohexylcarbodiimide

NHS:

N-hydroxysuccinimide

THF:

Tetrahydrofuran

DMSO:

Dimethyl sulfoxide

Na2CO3 :

Sodium carbonate

TAE:

Tris-acetate-EDTA

PBS:

Phosphate-buffered saline

DPBS:

Dulbecco's PBS

M199:

Medium 199

Pen/Strep:

Penicillin/streptomycin

FBS:

Fetal bovine serum

BSA:

Bovine serum albumin

BCA:

Bicinchoninic acid

TBS:

Tris-buffered saline

H&E:

Hematoxylin and eosin

HRP:

Horseradish peroxidase

RITC:

Rhodamine B isothiocyanate

FITC:

Fluorescein isothiocyanate

FAM:

Fluorescein amidites

PVDF:

Polyvinylidene difluoride

DAPI:

4,6-Diamino-2-phenylindole

SMA:

Smooth muscle actin

ITGA5:

Integrin subunit alpha 5

SIRT1:

Sirtuin-1

KLF:

Krüppel-like factor

MI:

Myocardial infarction

RNAi:

RNA interference

miRNA:

MicroRNA

cDNA:

Complementary DNA

MFI:

Mean fluorescent intensity

LNA:

Locked-nucleic acid

EC:

Endothelial cells

HUVEC:

Human umbilical vein endothelial cell

CAM:

Chicken chorioallantoic membrane

VSMC:

Vascular smooth muscle cell

RT:

Room temperature

1H NMR:

Proton nuclear magnetic resonance

DLS:

Dynamic light scattering

AFM:

Atomic force microscopy

CLSM:

Confocal laser scanning microscopy

qRT-PCR:

Quantitative reverse transcription polymerase chain reaction

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

IF:

Immunofluorescence

RNase A:

Ribonuclease A

PK:

Pharmacokinetic

PD:

Pharmacodynamic

References

  1. Kir D, Schnettler E, Modi S, Ramakrishnan S (2018) Regulation of angiogenesis by microRNAs in cardiovascular diseases. Angiogenesis 21(4):699–710

    Article  CAS  PubMed  Google Scholar 

  2. De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17(8):457

    Article  PubMed  CAS  Google Scholar 

  3. Wang W, Zhang E, Lin C (2015) MicroRNAs in tumor angiogenesis. Life Sci 136:28–35

    Article  CAS  PubMed  Google Scholar 

  4. Fish JE, Srivastava D (2009) MicroRNAs: opening a new vein in angiogenesis research. Sci Signal 2(52):pe1–pe1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509

    Article  CAS  PubMed  Google Scholar 

  6. Curtin CM, Castaño IM, O’Brien FJ (2018) Scaffold-based microRNA therapies in regenerative medicine and cancer. Adv Healthc Mater 7(1):1700695

    Article  CAS  Google Scholar 

  7. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fröhlich LF (2019) Micrornas at the interface between osteogenesis and angiogenesis as targets for bone regeneration. Cells 8(2):121

    Article  PubMed Central  CAS  Google Scholar 

  9. Pin A-L, Houle F, Guillonneau M, Paquet ER, Simard MJ, Huot J (2012) miR-20a represses endothelial cell migration by targeting MKK3 and inhibiting p38 MAP kinase activation in response to VEGF. Angiogenesis 15(4):593–608

    Article  CAS  PubMed  Google Scholar 

  10. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324(5935):1710–1713

    Article  CAS  PubMed  Google Scholar 

  12. Hinkel R, Penzkofer D, Zühlke S, Fischer A, Husada W, Xu Q-F, Baloch E, van Rooij E, Zeiher AM, Kupatt C (2013) Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation 128(10):1066–1075

    Article  CAS  PubMed  Google Scholar 

  13. Bheri S, Davis ME (2019) Nanoparticle-hydrogel system for post-myocardial infarction delivery of microRNA. ACS Nano 13(9):9702–9706

    Article  CAS  PubMed  Google Scholar 

  14. Binzel DW, Shu Y, Li H, Sun M, Zhang Q, Shu D, Guo B, Guo P (2016) Specific delivery of miRNA for high efficient inhibition of prostate cancer by RNA nanotechnology. Mol Ther 24(7):1267–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8(2):129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu C-f, Wang J (2015) Delivery systems for siRNA drug development in cancer therapy. Asian J Pharm Sci 10(1):1–12

    Article  Google Scholar 

  17. Wang LL, Burdick JA (2017) Engineered hydrogels for local and sustained delivery of RNA-interference therapies. Adv Healthc Mater 6(1):1601041

    Article  CAS  Google Scholar 

  18. Aagaard L, Rossi JJ (2007) RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 59(2–3):75–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kay MA (2011) State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 12(5):316

    Article  CAS  PubMed  Google Scholar 

  20. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4(5):346–358

    Article  CAS  PubMed  Google Scholar 

  21. Endo-Takahashi Y, Negishi Y, Nakamura A, Ukai S, Ooaku K, Oda Y, Sugimoto K, Moriyasu F, Takagi N, Suzuki R (2014) Systemic delivery of miR-126 by miRNA-loaded Bubble liposomes for the treatment of hindlimb ischemia. Sci Rep 4(1):1–6

    Article  Google Scholar 

  22. Chen Y, Zhu X, Zhang X, Liu B, Huang L (2010) Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 18(9):1650–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, Scheppke L, Huang M, Shields DJ, Lindquist JN, Lapinski PE (2010) MicroRNA-132–mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 16(8):909–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng CJ, Saltzman WM (2012) Polymer nanoparticle-mediated delivery of microRNA inhibition and alternative splicing. Mol Pharm 9(5):1481–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yin PT, Shah BP, Lee KB (2014) Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells. Small 10(20):4106–4112

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15(8):541

    Article  CAS  PubMed  Google Scholar 

  27. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751

    Article  CAS  PubMed  Google Scholar 

  28. Lungwitz U, Breunig M, Blunk T, Göpferich A (2005) Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 60(2):247–266

    Article  CAS  PubMed  Google Scholar 

  29. Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109(2):259–302

    Article  CAS  PubMed  Google Scholar 

  30. Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discovery 4(7):581–593

    Article  CAS  PubMed  Google Scholar 

  31. Godbey W, Wu KK, Mikos AG (1999) Size matters: molecular weight affects the efficiency of poly (ethylenimine) as a gene delivery vehicle. J Biomed Mater Res 45(3):268–275

    Article  CAS  PubMed  Google Scholar 

  32. Radmanesh F, Abandansari HS, Pahlavan S, Alikhani M, Karimi M, Rajabi S, Kazemi B, Baharvand H (2019) Optimization of miRNA delivery by using a polymeric conjugate based on deoxycholic acid-modified polyethylenimine. Int J Pharm 565:391–408

    Article  CAS  PubMed  Google Scholar 

  33. Varzideh F, Pahlavan S, Ansari H, Halvaei M, Kostin S, Feiz M-S, Latifi H, Aghdami N, Braun T, Baharvand H (2019) Human cardiomyocytes undergo enhanced maturation in embryonic stem cell-derived organoid transplants. Biomaterials 192:537–550

    Article  CAS  PubMed  Google Scholar 

  34. Mardpour S, Ghanian MH, Sadeghi-Abandansari H, Mardpour S, Nazari A, Shekari F, Baharvand H (2019) Hydrogel-mediated sustained systemic delivery of mesenchymal stem cell-derived extracellular vesicles improves hepatic regeneration in chronic liver failure. ACS Appl Mater Interfaces 11(41):37421–37433

    Article  CAS  PubMed  Google Scholar 

  35. Yang JT, Rayburn H, Hynes RO (1993) Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119(4):1093–1105

    Article  CAS  PubMed  Google Scholar 

  36. Francis SE, Goh KL, Hodivala-Dilke K, Bader BL, Stark M, Davidson D, Hynes RO (2002) Central roles of α5β1 integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arterioscler Thromb Vasc Biol 22(6):927–933

    Article  CAS  PubMed  Google Scholar 

  37. Liu P, Su J, Song X, Wang S (2018) miR-92a regulates the expression levels of matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 3 via sirtuin 1 signaling in hydrogen peroxide-induced vascular smooth muscle cells. Mol Med Rep 17(1):1041–1048

    CAS  PubMed  Google Scholar 

  38. Liu H, Li G, Zhao W, Hu Y (2016) Inhibition of MiR-92a may protect endothelial cells after acute myocardial infarction in rats: role of KLF2/4. Med Sci Monit 22:2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martinotti S, Ranzato E (2019) Scratch wound healing assay. Epidermal cells. Humana, New York, pp 225–229

    Chapter  Google Scholar 

  40. Gianni-Barrera R, Di Maggio N, Melly L, Burger MG, Mujagic E, Gürke L, Schaefer DJ, Banfi A (2020) Therapeutic vascularization in regenerative medicine: concise review. Stem Cells Transl Med 9(4):433–444

    Article  PubMed  PubMed Central  Google Scholar 

  41. Adini A, Adini I, Chi Z-l, Derda R, Birsner AE, Matthews BD, D’Amato RJ (2017) A novel strategy to enhance angiogenesis in vivo using the small VEGF-binding peptide PR1P. Angiogenesis 20(3):399–408

    Article  CAS  PubMed  Google Scholar 

  42. Caporali A, Emanueli C (2011) MicroRNA regulation in angiogenesis. Vasc Pharmacol 55(4):79–86

    Article  CAS  Google Scholar 

  43. Dai X, Tan C (2015) Combination of microRNA therapeutics with small-molecule anticancer drugs: mechanism of action and co-delivery nanocarriers. Adv Drug Deliv Rev 81:184–197

    Article  CAS  PubMed  Google Scholar 

  44. Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13(8):622–638

    Article  CAS  PubMed  Google Scholar 

  45. Bernardo BC, Nguyen SS, Winbanks CE, Gao XM, Boey EJ, Tham YK, Kiriazis H, Ooi JY, Porrello ER, Igoor S (2014) Therapeutic silencing of miR-652 restores heart function and attenuates adverse remodeling in a setting of established pathological hypertrophy. FASEB J 28(12):5097–5110

    Article  CAS  PubMed  Google Scholar 

  46. Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50:259–293

    Article  CAS  PubMed  Google Scholar 

  47. Swayze EE, Siwkowski AM, Wancewicz EV, Migawa MT, Wyrzykiewicz TK, Hung G, Monia BP, Bennett FC (2007) Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res 35(2):687–700

    Article  CAS  PubMed  Google Scholar 

  48. Segal M, Slack FJ (2020) Challenges identifying efficacious miRNA therapeutics for cancer. Expert Opin Drug Discov. 15(9):987–991

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang T, Shigdar S, Al Shamaileh H, Gantier MP, Yin W, Xiang D, Wang L, Zhou S-F, Hou Y, Wang P (2017) Challenges and opportunities for siRNA-based cancer treatment. Cancer Lett 387:77–83

    Article  CAS  PubMed  Google Scholar 

  50. Chen X, Gu S, Chen B-F, Shen W-L, Yin Z, Xu G-W, Hu J-J, Zhu T, Li G, Wan C (2015) Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials 53:239–250

    Article  CAS  PubMed  Google Scholar 

  51. Li RQ, Wu Y, Zhi Y, Yang X, Li Y, Xua FJ, Du J (2016) PGMA-based star-like polycations with plentiful hydroxyl groups act as highly efficient miRNA delivery nanovectors for effective applications in heart diseases. Adv Mater 28(33):7204–7212

    Article  CAS  PubMed  Google Scholar 

  52. Peng B, Chen Y, Leong KW (2015) MicroRNA delivery for regenerative medicine. Adv Drug Deliv Rev 88:108–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang H, Jiang Y, Peng H, Chen Y, Zhu P, Huang Y (2015) Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors. Adv Drug Deliv Rev 81:142–160

    Article  CAS  PubMed  Google Scholar 

  54. Klauber TC, Søndergaard RV, Sawant RR, Torchilin VP, Andresen TL (2016) Elucidating the role of free polycations in gene knockdown by siRNA polyplexes. Acta Biomater 35:248–259

    Article  CAS  PubMed  Google Scholar 

  55. Thapa B, Plianwong S, Bahadur KR, Rutherford B, Uludağ H (2016) Small hydrophobe substitution on polyethylenimine for plasmid DNA delivery: optimal substitution is critical for effective delivery. Acta Biomater 33:213–224

    Article  CAS  PubMed  Google Scholar 

  56. Dai Z, Gjetting T, Mattebjerg MA, Wu C, Andresen TL (2011) Elucidating the interplay between DNA-condensing and free polycations in gene transfection through a mechanistic study of linear and branched PEI. Biomaterials 32(33):8626–8634

    Article  CAS  PubMed  Google Scholar 

  57. Kish PE, Tsume Y, Kijek P, Lanigan TM, Hilfinger JM, Roessler BJ (2007) Bile acid—oligopeptide conjugates interact with DNA and facilitate transfection. Mol Pharm 4(1):95–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Upadhyay AP, Behara DK, Sharma GP, Gyanprakash M, Pala RGS, Sivakumar S (2016) Fabricating appropriate band-edge-staggered heterosemiconductors with optically activated Au nanoparticles via click chemistry for photoelectrochemical water splitting. ACS Sustain Chem Eng 4(9):4511–4520

    Article  CAS  Google Scholar 

  59. Nguyen MK, Jeon O, Krebs MD, Schapira D, Alsberg E (2014) Sustained localized presentation of RNA interfering molecules from in situ forming hydrogels to guide stem cell osteogenic differentiation. Biomaterials 35(24):6278–6286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. De Laporte L, Shea LD (2007) Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Deliv Rev 59(4–5):292–307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9(1):57–67

    Article  CAS  PubMed  Google Scholar 

  62. Li Y, Dal-Pra S, Mirotsou M, Jayawardena TM, Hodgkinson CP, Bursac N, Dzau VJ (2016) Tissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAs. Sci Rep 6:38815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Monaghan MG, Holeiter M, Brauchle E, Layland SL, Lu Y, Deb A, Pandit A, Nsair A, Schenke-Layland K (2018) Exogenous miR-29B delivery through a hyaluronan-based injectable system yields functional maintenance of the infarcted myocardium. Tissue Eng Part A 24(1–2):57–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bakaic E, Smeets NM, Hoare T (2015) Injectable hydrogels based on poly (ethylene glycol) and derivatives as functional biomaterials. RSC Adv 5(45):35469–35486

    Article  CAS  Google Scholar 

  65. Huynh CT, Nguyen MK, Tonga GY, Longé L, Rotello VM, Alsberg E (2016) Photocleavable hydrogels for light-triggered siRNA release. Adv Healthc Mater 5(3):305–310

    Article  CAS  PubMed  Google Scholar 

  66. Nair DP, Podgorski M, Chatani S, Gong T, Xi W, Fenoli CR, Bowman CN (2014) The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater 26(1):724–744

    Article  CAS  Google Scholar 

  67. Madl CM, Heilshorn SC (2018) Bioorthogonal strategies for engineering extracellular matrices. Adv Func Mater 28(11):1706046

    Article  CAS  Google Scholar 

  68. Bernardo BC, Ooi JY, Lin RC, McMullen JR (2015) miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem 7(13):1771–1792

    Article  CAS  PubMed  Google Scholar 

  69. Rogg E-M, Abplanalp WT, Bischof C, John D, Schulz MH, Krishnan J, Fischer A, Poluzzi C, Schaefer L, Bonauer A (2018) Analysis of cell type-specific effects of microRNA-92a provides novel insights into target regulation and mechanism of action. Circulation 138(22):2545–2558

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our appreciation to Paria Pooyan for her assistance with preparation of the schematic figures. We also express our appreciation to Poya Tavakol for his assistance in animal handling.

Funding

This work was supported by a grant from Royan Institute; the Iranian Council of Stem Cell Research and Technology; the Iran National Science Foundation (INSF, Grant Number [96001316]); and Iran Science Elites Federation to H.B.

Author information

Authors and Affiliations

Authors

Contributions

HB and FR contributed to the design and implementation of the research. FR, HSA, MHG, FV, SY, and MA performed experiments. TB provided all miRNA inhibitor sequences and approved the manuscript. FR, HSA, MHG, SP, and SM contributed to the interpretation of the results and the preparation of the manuscript. HB provided financial and administrative support and approved the manuscript. All authors reviewed and confirmed the manuscript before submission.

Corresponding author

Correspondence to Hossein Baharvand.

Ethics declarations

Conflicts of interest

The authors have declared that no conflicts of interest exist.

Ethical approval

All animal care and procedures were performed according to standards established by the Royan Institutional Review Board and Institutional Ethics Committee (Tehran, Iran).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radmanesh, F., Sadeghi Abandansari, H., Ghanian, M.H. et al. Hydrogel-mediated delivery of microRNA-92a inhibitor polyplex nanoparticles induces localized angiogenesis. Angiogenesis 24, 657–676 (2021). https://doi.org/10.1007/s10456-021-09778-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-021-09778-6

Keywords

Navigation