Skip to main content
Log in

Conditional normal extreme-value copulas

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

We propose a new class of extreme-value copulas which are extreme-value limits of conditional normal models. Conditional normal models are generalizations of conditional independence models, where the dependence among observed variables is modeled using one unobserved factor. Conditional on this factor, the distribution of these variables is given by the Gaussian copula. This structure allows one to build flexible and parsimonious models for data with complex dependence structures, such as data with spatial dependence or factor structure. We study the extreme-value limits of these models and show some interesting special cases of the proposed class of copulas. We develop estimation methods for the proposed models and conduct a simulation study to assess the performance of these algorithms. Finally, we apply these copula models to analyze data on monthly wind maxima and stock return minima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The nugget effect is used to describe the variability of measurements that are closely spaced (e.g., due to measurement errors)

References

  • Aas, K., Czado, C., Frigessi, A., Bakken, H.: Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44, 182–198 (2009)

    MathSciNet  MATH  Google Scholar 

  • Aloui, R., Aïssa, M.S.B., Hammoudeh, S., Nguyen, D.K.: Dependence and extreme dependence of crude oil and natural gas prices with applications to risk management. Energy Economics 42, 332–342 (2009)

    Article  Google Scholar 

  • Andersen, E.W.: Composite likelihood and two-stage estimation in family studies. Biostatistics 5(1), 15–30 (2004)

    Article  Google Scholar 

  • Bargaoui, Z.K., Bardossy, A.: Modeling short duration extreme precipitation patterns using copula and generalized maximum pseudo-likelihood estimation with censoring. Advances in Water Resources 84, 1–13 (2015)

    Article  Google Scholar 

  • Brechmann, E.C., Czado, C., Aas, K.: Truncated regular vines in high dimensions with applications to financial data. Canadian Journal of Statistics 40, 68–85 (2012)

    Article  MathSciNet  Google Scholar 

  • Castro-Camilo, D., Huser, R.: Local likelihood estimation of complex tail dependence structures, applied to U.S. precipitation extremes. Journal of the American Statistical Association 115, 1037–1045 (2020)

    Article  MathSciNet  Google Scholar 

  • Demarta, S., McNeil, A.J.: The t copula and related copulas. International Statistical Review 73, 111–129 (2005)

    Article  Google Scholar 

  • Ferreira, M.: Nonparametric estimation of the tail-dependence coefficient. REVSTAT – Statistical Journal 11, 1–16 (2013)

    MathSciNet  MATH  Google Scholar 

  • Genest, C., Ghoudi, K., Rivest, L.P.: A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82, 543–552 (1995)

    Article  MathSciNet  Google Scholar 

  • Genest, C., Segers, J.: Rank-based inference for bivariate extreme-value copulas. Annals of Statistics 37, 2990–3022 (2009)

    Article  MathSciNet  Google Scholar 

  • Genton, M.G., Kleiber, W.: Cross-covariance functions for multivariate geostatistics (with discussion). Statistical Science 30, 147–163 (2015)

    MathSciNet  MATH  Google Scholar 

  • Gneiting, T., Genton, M.G., Guttorp, P.: Geostatistical space-time models, stationarity, separability and full symmetry. In: Finkenstaedt, B., Held, L., Isham, V. (eds.) Statistics of spatio-temporal systems, Chapman & Hall / CRC Press, monograph in statistics and applied probability, Boca Raton (2007)

  • de Haan, L., Ferreira, A.: Extreme Value Theory. Springer, New York (2006)

    Book  Google Scholar 

  • Hua, L., Joe, H.: Tail order and intermediate tail dependence of multivariate copulas. Journal of Multivariate Analysis 102, 1454–1471 (2011)

    Article  MathSciNet  Google Scholar 

  • Hua, L., Xia, M., Basu, S.: Factor copula approaches for assessing spatially dependent high-dimensional risks. North American Actuarial Journal 21(1), 147–160 (2017)

    Article  MathSciNet  Google Scholar 

  • Hüsler, J., Reiss, R.D.: Maxima of normal random vectors: between independence and complete dependence. Statistics and Probability Letters 7, 283–286 (1989)

    Article  MathSciNet  Google Scholar 

  • Joe, H.: Dependence Modeling with Copulas. Chapman & Hall/CRC, Boca Raton (2014)

    Book  Google Scholar 

  • Krupskii, P., Genton, M.G.: Factor copula models for data with spatio-temporal dependence. Spatial Statistics 22, 108–195 (2017)

    Article  MathSciNet  Google Scholar 

  • Krupskii, P., Genton, M.G.: Linear factor copula models and their properties. Scandinavian Journal of Statistics 45(4), 861–878 (2018)

    Article  MathSciNet  Google Scholar 

  • Krupskii, P., Genton, M.G.: A copula model for non-Gaussian multivariate spatial data. Journal of Multivariate Analysis 169, 264–277 (2019)

    Article  MathSciNet  Google Scholar 

  • Krupskii, P., Huser, R., Genton, M.G.: Factor copula models for replicated spatial data. Journal of the American Statistical Association 521, 467–479 (2018)

    Article  MathSciNet  Google Scholar 

  • Krupskii, P., Joe, H.: Factor copula models for multivariate data. Journal of Multivariate Analysis 120, 85–101 (2013)

    Article  MathSciNet  Google Scholar 

  • Krupskii, P., Joe, H.: Structured factor copula models: theory, inference and computation. Journal of Multivariate Analysis 138, 53–73 (2015)

    Article  MathSciNet  Google Scholar 

  • Krupskii, P., Joe, H.: Flexible copula models with dynamic dependence and application to financial data. Journal of Econometrics and Statistics. 16, 148–167 (2020)

    Article  MathSciNet  Google Scholar 

  • Krupskii, P., Joe, H., Lee, D., Genton, M.G.: Extreme value limit of the convolution of exponential and multivariate normal distributions: Link to the Hüsler-Reiss distribution. Journal of Multivariate Analysis 163, 80–95 (2018)

    Article  MathSciNet  Google Scholar 

  • Kurowicka, D., Cooke, R.: Uncertainty analysis with high dimensional dependence modelling. Wiley Series in Probability and Statistics, Hoboken (2006)

    Book  Google Scholar 

  • Lee, D., Joe, H.: Multivariate extreme value copulas with factor and tree dependence structures. Extremes 21(1), 147–176 (2018)

    Article  MathSciNet  Google Scholar 

  • Lindsay, B.: Composite likelihood methods. Contemporary Mathematics 80, 220–239 (1998)

    Google Scholar 

  • Manner, H., Segers, J.: Tails of correlation mixtures of elliptical copulas. Insurance: Mathematics and Economics 48(1), 153–160 (2011)

    MathSciNet  MATH  Google Scholar 

  • McNeil, A.J., Frey, R., Embrechts, P.: Quantitative risk management. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  • Millar, P.W.: A general approach to the optimality of minimum distance estimators. Transactions of the AMS - American Mathematical Society 286, 377–418 (1984)

    Article  MathSciNet  Google Scholar 

  • Newey, W.K., McFadden, D.: Large sample estimation and hypothesis testing. Handbook of Econometrics, p 4 (1994)

  • Nikoloulopoulos, A.K., Joe, H., Li, H.: Extreme value properties of multivariate t copulas. Extremes 12, 129–148 (2009)

    Article  MathSciNet  Google Scholar 

  • Oh, D.H., Patton, A.: Modeling dependence in high dimensions with factor copulas. Journal of Business and Economic Statistics 35, 139–154 (2017)

    Article  MathSciNet  Google Scholar 

  • Sklar, A.: Fonctions de répartition à n dimensions et leurs marges. Institute of Statistics of the University of Paris 8, 229–231 (1959)

    MATH  Google Scholar 

  • Stroud, A., Secrest, D.: Gaussian quadrature formulas. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  • Yoshiba, T.: Maximum likelihood estimation of skew-t copulas with its applications to stock returns. Journal of Statistical Computation and Simulation 88 (13), 2489–2506 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank the associate editor and two anonymous referees for their constructive comments that helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Krupskii.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the Andrew Sisson fund. This research was supported by King Abdullah University of Science and Technology (KAUST).

Appendix

Appendix

1.1 A.1 Proof of Proposition 1

With \(\gamma _{j} = \frac {1}{k+1}A_{j}^{\prime }(\frac {k}{k+1}) + A_{j}(\frac {k}{k+1})\) and \(\eta _{j}(k) = (k+1)A_{j}(\frac {k}{k+1}) - k\), we find that \(C_{j|0}(u|u^{k}) = \gamma _{j} u^{\eta _{j}(k)}\), j = 1,…,d, and

$$ \begin{array}{@{}rcl@{}} C_{\mathbf{U}}(\mathbf{u}) &=& {\int}_{0}^{\infty} C_{N}\{C_{1|0}(u|u^{k}), \ldots, C_{d|0}(u|u^{k})\} u^{k} \ln u \mathrm{d} k \\ &\leq& {\int}_{0}^{\infty} C_{N}\{\gamma^{*} u^{\eta^{*}(k)}, \ldots, \gamma^{*} u^{\eta^{*}(k)}\} u^{k} \ln u \mathrm{d} k \\&& \sim_{u \to 0} \ {\int}_{0}^{\infty} (\gamma^{+}u)^{\kappa_{\boldsymbol{\Sigma}}\cdot\eta^{*}(k) + k} \ell_{N}(u) \mathrm{d} k, \end{array} $$

where N(u) is a slowly varying function and \(\gamma ^{*} = \max \limits _{j}\gamma _{j}, \ \eta ^{*}(k) = \min \limits _{j}\eta _{j}(k)\). It is seen that \(\kappa _{L} \geq \min \limits _{k \geq 0}\{\kappa _{\boldsymbol {\Sigma }}\cdot \eta ^{*}(k) + k\} > 1\) because \(\eta ^{*}(k) \geq \max \limits (0, 1 - k)\) and \(\eta ^{*}(1) = \min \limits _{j} \kappa _{j} - 1 > 0\).

Similarly, one can show that \(\kappa _{L} \leq \min \limits _{k \geq 0}\{\kappa _{\boldsymbol {\Sigma }}\cdot \eta ^{**}(k) + k\} \leq \kappa _{\boldsymbol {\Sigma }}\cdot \eta ^{**}(0) = \kappa _{\boldsymbol {\Sigma }}\), where \(\eta ^{**}(k) = \max \limits _{j}\eta _{j}(k)\). This implies that CU has intermediate lower tail dependence. \(\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \square \)

1.2 A.2 Proof of Proposition 2

Let \(\bar C_{j|0}(u_{j}|u_{0}) = 1-C_{j|0}(1-u_{j}|1-u_{0})\), j = 1,…,d. We use Theorem 8.76 of Joe (2014):

$$ \begin{array}{@{}rcl@{}} \ell(w_{1},\ldots,w_{d}) &=& \lim_{u \to 0} \frac{1}{u}\left[1-{{\int}_{0}^{1}}C_{N}\{1-\bar C_{1|0}(uw_{1}|w_{0}),\ldots,1-\bar C_{d|0}(uw_{d}|w_{0}); \boldsymbol{\Sigma}\} \mathrm{d} w_{0}\right]\\ &=& \lim_{u \to 0} {\int}_{0}^{1/u}\left[1 - C_{N}\{1-\bar C_{1|0}(uw_{1}|uw_{0}),\ldots,1-\bar C_{d|0}(uw_{d}|uw_{0}); \boldsymbol{\Sigma}\} \right]\mathrm{d} w_{0}\\ &=& {\int}_{0}^{\infty}\left[1- C_{N}\{1-b_{1|0}(w_{1}|w_{0}),\ldots,1-b_{d|0}(w_{d}|w_{0}); \boldsymbol{\Sigma}\} \right]\mathrm{d} w_{0}. \end{array} $$

\(\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \square \)

1.3 A.3 Proof of Proposition 3

We have Cj|0(1 − uwj|v0) = 1 − uwjcj,0(1,v0) + o(u), j = 1,…,d, and therefore

$$ \begin{array}{@{}rcl@{}} \ell(w_{1}, \ldots, w_{d}) &=& \lim_{u\to 0}\frac{1}{u}{{\int}_{0}^{1}}\left[1 - \min_{j}\{C_{j|0}(1-uw_{j}| v_{0})\}\right]\mathrm{d} v_{0}\\ &=& \lim_{u\to 0}\frac{1}{u}{{\int}_{0}^{1}}\left[uw_{j}\max_{j}\{c_{j,0}(1, v_{0}) + o(1)\}\right]\mathrm{d} v_{0} = {{\int}_{0}^{1}} \max_{j}\{w_{j}c_{j,0}(1,v_{0})\} \mathrm{d} v_{0}. \end{array} $$

\(\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \square \)

1.4 A.4 Proof of Proposition 4

We use the following Lemma to prove this proposition.

Lemma 1

Let CN(u,v; ρ) be the normal copula with correlation ρ. If ρ → 1, then

$$ \begin{array}{@{}rcl@{}} C_{N}(u,u;\rho) &=& u - \left( \frac{1-\rho}{\pi}\right)^{1/2}\phi\{{\Phi}^{-1}(u)\} + (1-\rho)^{3/2}\phi\{{\Phi}^{-1}(u)\}[K_{1}(\rho) \\&&+ K_{2}(\rho)\{{\Phi}^{-1}(u)\}^{2}], \end{array} $$

where \(\max \limits _{\rho } |K_{i}(\rho )| \leq K_{0} < \infty \), i = 1, 2.

Proof Proof of Lemma 1:

Denote CN(u|v; ρ) = CN(u,v; ρ)/v and \(\delta = \sqrt {1-\rho }\). We find that

$$C_{N}(u,u;\rho) = 2{{\int}_{0}^{u}} C_{N}(v|v;\rho)\mathrm{d} v = 2{{\int}_{0}^{u}}{\Phi}\left\{\frac{\delta}{\sqrt{2-\delta^{2}}}{\Phi}^{-1}(v)\right\} \mathrm{d} v.$$

Let \(h(\delta ) = h(\delta , v) = {\Phi }\left \{\frac {\delta }{\sqrt {2-\delta ^{2}}}{\Phi }^{-1}(v)\right \}\) and \(g(\delta ) = g(\delta , v) = \phi \left \{\frac {\delta }{\sqrt {2-\delta ^{2}}}{\Phi }^{-1}(v)\right \}\). Using the Taylor expansion of h(δ) around δ = 0 with a fixed v yields:

$$ h(\delta) = h(0) + h^{\prime}(0)\delta + h^{\prime\prime}(\varUpsilon)\delta^{2}, \quad 0 < \varUpsilon < \delta, $$

where

$$ h^{\prime}(t) = \frac{2{\Phi}^{-1}(v)}{(2-t^{2})^{1.5}} \cdot g(t), \quad h^{\prime\prime}(t) = -\frac{2t{\Phi}^{-1}(v)}{(2-t^{2})^{3.5}} \cdot [2\{{\Phi}^{-1}(v)\}^{2} - 3(2-t^{2})]g(t). $$

It implies that

$$h(\delta) = 0.5 + 0.5\pi^{-1/2}\delta {\Phi}^{-1}(v) + w_{1}\delta^{3} {\Phi}^{-1}(v) - w_{2}\delta^{3} \{{\Phi}^{-1}(v)\}^{3},$$

where 0 < w1 < 6ϕ(0) and 0 < w2 < 4ϕ(0) for any 0 < v < 1 and δ → 0; hence,

$$ C_{N}(u,u;\rho) = 2{{\int}_{0}^{u}} h(\delta, v) \mathrm{d} v = u + \pi^{-1/2}\delta I_{1} + 2w_{1}\delta^{3} I_{1} - 2w_{2}\delta^{3} I_{2}, $$

where

$$ I_{1} = {{\int}_{0}^{u}} {\Phi}^{-1}(v) \mathrm{d} v = -\phi\{{\Phi}^{-1}(u)\}, \quad I_{2} = {{\int}_{0}^{u}} \{{\Phi}^{-1}(v)\}^{3} \mathrm{d} v = -[2+\{{\Phi}^{-1}(u)\}^{2}]\phi\{{\Phi}^{-1}(u)\}. $$

Finally,

$$ C_{N}(u,u;\rho) = u - \pi^{-1/2}\delta \phi\{{\Phi}^{-1}(u)\} + \delta^{3}[K_{1} + K_{2}\{{\Phi}^{-1}(u)\}^{2}]\phi\{{\Phi}^{-1}(u)\}, $$

where K1 = − 2w1 + 4w2, K2 = 2w2 and |K1| < 24ϕ(0), K2 < 12ϕ(0). □

Proof Proof o Proposition 4:

Note that \(\phi \{{\Phi }^{-1}(u)\} \sim u \ell ^{*}(u)\) as u → 0, where (u) is a slowly varying function. It implies that for any m ≥ 0,

$${\int}_{0}^{\infty} [{\Phi}^{-1}\{b_{1|0}(1|w_{0})\}]^{m}\phi[{\Phi}^{-1}\{b_{1|0}(1|w_{0})\}] \mathrm{d} w_{0} < \infty.$$

From Proposition 2 and Lemma 1, we find that, as ρ → 1,

$$ \begin{array}{@{}rcl@{}} \ell(1,1) &=& {\int}_{0}^{\infty}[1- C_{N}\{1-b_{1|0}(1|w_{0}), 1-b_{1|0}(1|w_{0}); \rho\}] \mathrm{d} w_{0}\\ &=& 2-{\int}_{0}^{\infty}C_{N}\{b_{1|0}(1|w_{0}), b_{1|0}(1|w_{0}); \rho\} \mathrm{d} w_{0}\\ &=& 2 - {\int}_{0}^{\infty}b_{1|0}(1|w_{0}) \mathrm{d} w_{0} + \left( \frac{1-\rho}{\pi}\right)^{1/2}{\int}_{0}^{\infty} \phi[{\Phi}^{-1}\{b_{1|0}(1|w_{0})\}] \mathrm{d} w_{0} + O((1-\rho)^{3/2})\\ &=& 1 + \left( \frac{1-\rho}{\pi}\right)^{1/2}{\int}_{0}^{\infty} \phi[{\Phi}^{-1}\{b_{1|0}(1|w_{0})\}] \mathrm{d} w_{0} + O((1-\rho)^{3/2}). \end{array} $$

1.5 A.5 Computation of V j,k(w j,w k)

Let Ij,k(w0) = 1 − CN{1 − bj|0(wj|w0), 1 − bk|0(wk|w0); ρj,k}. We assume that, as \(w_{0} \to \infty \), \(b_{j|0}(w_{j}|w_{0}) = \ell _{j}(w_{0}) w_{0}^{-\phi _{j}} + o(w_{0}^{-\phi _{j}})\) and \(b_{k|0}(w_{k}|w_{0}) = \ell _{k}(w_{0}) w_{0}^{-\phi _{k}} + o(w_{0}^{-\phi _{k}})\), ϕj,ϕk > 1, where j and k are slowly varying functions. It follows that \(I_{j,k}(w_{0}) = \ell _{j,k}(w_{0})w_{0}^{-\phi _{j,k}}\) as \(w_{0} \to \infty \) where \(\phi _{j,k} = \min \limits (\phi _{j}, \phi _{k})\) and j,k is a slowly varying function. The integrand Ij,k(w0) has a slow rate of decay in the tail and standard numerical integration methods used to compute \(V_{j,k}(w_{j},w_{k}) = {\int \limits }_{0}^{\infty } I_{j,k}(w_{0}) \mathrm {d} w_{0}\) may not be efficient.

To make computations more efficient, we can write

$$ V_{j,k}(w_{j},w_{k}) = {{\int}_{0}^{1}} I_{j,k}(w_{0}) \mathrm{d} w_{0} + {\int}_{1}^{\infty} I_{j,k}(w_{0}) \mathrm{d} w_{0} = {{\int}_{0}^{1}} I_{j,k}(w_{0}) \mathrm{d} w_{0} + {\alpha{\int}_{0}^{1}} I_{j,k}(z_{0}^{-\alpha}) z_{0}^{-\alpha - 1}\mathrm{d} z_{0}, $$

where the first integral has finite integration limits and bounded integrand. The second integrand can take large values if z0 is close to zero. We therefore need to select the smallest α > 0 such that \(I_{j,k}^{*}(z_{0}) = I_{j,k}(z_{0}^{-\alpha })z_{0}^{-\alpha - 1} < \infty \) for 0 ≤ z0 ≤ 1. We have \(I^{*}_{j,k}(z_{0}) = \ell _{j,k}(z_{0}^{-\alpha })z_{0}^{(\phi _{j,k}-1)\alpha -1}\) as z0 → 0 and one can select \(\alpha = \alpha _{j,k} = \{\phi _{j,k}-1\}^{-1}\). Now Gauss-Legendre quadrature (Stroud and Secrest 1966) can be used to evaluate the two integrals and compute Vj,k(wj,wk).

The assumption about the tail behavior of bj|0 holds for many copulas with the upper tail dependence. For the reflected Clayton copula with parameter 𝜃j,

$$ \begin{array}{@{}rcl@{}} b_{j|0}(w_{j}|w_{0}) &=& \left\{1+(w_{0}/w_{j})^{\theta_{j}}\right\}^{-1-1/\theta_{j}} \\&=& (w_{0}/w_{j})^{-1-\theta_{j}} + o(w_{0}^{-1-\theta_{j}}), \quad \text{as } w_{0} \to \infty, \end{array} $$

and therefore \(\alpha _{j,k} = 1/\min \limits (\theta _{j}, \theta _{k})\). For the Gumbel copula with parameter 𝜃j,

$$ b_{j|0}(w_{j}|w_{0}) = 1-\left\{1+(w_{j}/w_{0})^{\theta_{j}}\right\}^{-1+1/\theta_{j}} = (1-1/\theta_{j})(w_{0}/w_{j})^{-\theta_{j}} + o(w_{0}^{-\theta_{j}}), \quad \text{as } w_{0} \to \infty, $$

and therefore \(\alpha _{j,k} = 1/\{\min \limits (\theta _{j}, \theta _{k})-1\}\).

Similar ideas can be used to compute the derivatives of the stable tail dependence function. We found that the same transformation works very well in this case and that this change of variables greatly improves the accuracy of numerical integration and nq = 35 quadrature points is sufficient to compute the density \(c_{j,k}^{\text {EV}}\) in most cases.

1.6 A.6 Parameter estimation for \(C_{\mathbf {U}}^{\text {EV}}\) with Clayton linking copulas

Here we provide more details for \(C_{\mathbf {U}}^{\text {EV}}\) in Section 3.2 with Clayton linking copulas. Note that Vj,k(1, 1) = 1 if 𝜃j = 𝜃k. Without loss of generality, we now assume that 𝜃j > 𝜃k for the (j,k) margin. We have c(1,v; 𝜃) = (𝜃 + 1)v𝜃 and

$$ V_{j,k}(1,1) = {\int}_{0}^{v_{j,k}} c(1,v_{0};\theta_{k})\mathrm{d} v_{0} + {\int}_{v_{j,k}}^{1} c(1,v_{0};\theta_{j})\mathrm{d} v_{0} = 1 - C(v_{j,k}|1; \theta_{j}) + C(v_{j,k}|1; \theta_{k}), $$

where the conditional Clayton copula C(v|1; 𝜃) = v𝜃+ 1 and vj,k ∈ (0, 1) satisfies

$$ c(1,v_{j,k}; \theta_{j}) = c(1,v_{j,k}; \theta_{k}) \quad \Rightarrow \quad v_{j,k} = \left( \frac{\theta_{k}+1}{\theta_{j}+1}\right)^{\frac{1}{\theta_{j} - \theta_{k}}} , $$

and therefore

$$ V_{j,k}(1,1) = 1 + \frac{(\vartheta-1)^{\vartheta-1}}{\vartheta^{\vartheta}}, \quad \vartheta = \frac{\theta_{j}+1}{\theta_{j} - \theta_{k}} . $$

Similarly, one can show that the copula \(C_{\mathbf {U}}^{\text {EV}}\) and its lower-dimensional marginals depend on 𝜗(𝜃j,𝜃k) = (𝜃j + 1)/(𝜃j𝜃k), or, equivalently, on 𝜗(𝜃j,𝜃k) = {𝜗(𝜃j,𝜃k) − 1}/𝜗(𝜃j,𝜃k) = (𝜃k + 1)/(𝜃j + 1) for 1 ≤ k < jd. The model is therefore non-identifiable and one can fix one parameter and estimate the remaining d − 1 parameters.

If the order of variables is ignored, the model is still non-identifiable even if one parameter is fixed.

Example 5

Assume that d = 3 and 𝜃 = (0.5, 1, 2). We generate a sample of size N = 100 from \(C_{\mathbf {U}}^{\text {EV}}\) assuming Σ is a matrix of ones. We fix 𝜃2 = 1 and find that the objective function (4) attains its minimum at \(\widehat {\boldsymbol {\theta }} = (0.456, 1, 2.584)^{\top }\) and \(\tilde {\boldsymbol {\theta }} = (1.747, 1, 0.116)^{\top }\). We can see that

$$ \frac{\widehat{\boldsymbol{\theta}}_{1}+1}{\widehat{\boldsymbol{\theta}}_{2}+1} = \frac{\tilde{\boldsymbol{\theta}}_{2}+1}{\tilde{\boldsymbol{\theta}}_{1}+1} , \quad \frac{\widehat{\boldsymbol{\theta}}_{1}+1}{\widehat{\boldsymbol{\theta}}_{3}+1} = \frac{\tilde{\boldsymbol{\theta}}_{3}+1}{\tilde{\boldsymbol{\theta}}_{1}+1} , \quad \frac{\widehat{\boldsymbol{\theta}}_{2}+1}{\widehat{\boldsymbol{\theta}}_{3}+1} = \frac{\tilde{\boldsymbol{\theta}}_{3}+1}{\tilde{\boldsymbol{\theta}}_{2}+1} . $$

To select the right solution, one can check bivariate scatter plots: if 𝜃j > 𝜃k for the (j,k) margin, the marginal density is zero around the corner (0,1) and the density is skewed to the lower right corner. Figure 5 shows scatter plots for the simulated data set. The plots indicate that 𝜃1 < 𝜃2 < 𝜃3 and therefore \(\widehat {\boldsymbol {\theta }}\) should be selected.

Fig. 5
figure 5

Bivariate scatter plots for the data set simulated from \(C_{\mathbf {U}}^{\text {EV}}\) with degenerate Σ (matrix of ones) and Clayton linking copulas with 𝜃 = (0.5,1,2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krupskii, P., Genton, M.G. Conditional normal extreme-value copulas. Extremes 24, 403–431 (2021). https://doi.org/10.1007/s10687-021-00412-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-021-00412-8

Keywords

AMS 2000 Subject Classifications

Navigation