Skip to main content
Log in

Association between sexually selected traits and allelic distance in two unlinked MHC II loci in white-tailed deer (Odocoileus virginianus)

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Body size and secondary sexual characteristics are drivers of male reproductive success among polygynous species. A gene complex found to be associated with morphology in several species is the major histocompatibility complex (MHC). However, while several studies have found that greater MHC diversity is associated with larger body size and secondary sexual characteristics, other studies have demonstrated that maximal MHC diversity is not always optimal for the individual’s fitness. This study tested if MHC diversity, measured as pairwise allelic distances at each of two unlinked MHC II loci (exon 2 for the classical antigen-binding protein MHC-DRB and exon 2 for the accessory protein MHC-DOB), was associated with body size (male and female) or antler size in a semi-wild enclosed population of white-tailed deer (Odocoileus virginianus). After accounting for the effect of age on body and antler size, we used residual analysis to assess whether MHC allelic distances explained any of the remaining variation in body and antler size. While we found no associations between physical characteristics and MHC-DRB, we found that both male body and antler size were associated with MHC-DOB nucleotide allelic distances. Specifically, we found a quadratic relationship between MHC-DOB and male body size, where body size peaked at moderate MHC-DOB nucleotide allelic distance. However, we found a positive linear association between MHC-DOB nucleotide allelic distances and antler size. Neither MHC-DRB nor MHC-DOB influenced female body size, even though the average allelic distances of males and females were not significantly different. Our results suggest that MHC-DOB, or a gene genetically linked to this locus, may influence male morphological characteristics in white-tailed deer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allaye Chan AC (1991) Physiological and ecological determinants of nutrient partitioning in caribou and reindeer. PhD dissertation, University of Alaska, Fairbanks USA.

  • Andersson M (1994) Sexual selection. Princeton Univ. Press, Princeton, New Jersey

    Book  Google Scholar 

  • Andersson L, Lunden A, Sigurdardottir S, Davies CJ, Rask L (1988) Linkage relationships in the bovine MHC region. High recombination frequency between class II subregions. Immunogenetics 27:273–280

    Article  CAS  PubMed  Google Scholar 

  • Arnold TW (2010) Uninformative parameters and model selection using Akaike’s Information Criterion. J Wildl Manag 74:1175–1178

    Article  Google Scholar 

  • Band M, Larson JH, Womack JE, Lewin HA (1998) A radiation hybrid map of BTA23: identification of a chromosomal rearrangement leading to separation of the cattle MHC class II subregions. Genomics 53:269–275

    Article  CAS  PubMed  Google Scholar 

  • Barribeau SM, Villinger J, Waldman B (2008) Major histocompatibility complex based resistance to a common bacterial pathogen of amphibians. PLoS ONE 3:e2692

    Article  PubMed  PubMed Central  Google Scholar 

  • Bascunan-Garcia AP, Lara C, Cordoba-Aguilar A (2010) Immune investment impairs growth, female reproduction and survival in the house cricket, Acheta domesticus. J Insect Physiol 56:204–211

    Article  CAS  PubMed  Google Scholar 

  • Bennett D (1975) The T-locus of the mouse. Cell 6:441–454

    Article  Google Scholar 

  • Bolker B, R Development Core Team (2017) bbmle: tools for general maximum likelihood estimation. R package version 1.0.20. https://CRAN.R-project.org/package=bbmle.

  • Bonato M, Evans MR, Hasselquist D, Cloete SWP, Cherry MI (2009) Growth rate and hatching date in ostrich chicks reflect humoral but not T-cell-mediated immune function. Behav Ecol Sociobiol 64:183–191

    Article  Google Scholar 

  • Bonneaud C, Mazuc J, Gonzalez G, Haussy C, Chastel O, Faivre B, Sorci G (2003) Assessing the cost of mounting an immune response. Am Nat 161:367–379

    Article  PubMed  Google Scholar 

  • Bonneaud C, Mazuc J, Chastel O, Westerdahl H, Sorci G (2004) Terminal investment induced by immune challenge and fitness traits associated with major histocompatibility complex in the house sparrow. Evolution 58:2823–2830

    CAS  PubMed  Google Scholar 

  • Brambilla A, Biiebach I, Bassano B, Bogliani G, von Hardenberg A (2015) Direct and indirect causal effects of heterozygosity on fitness-related traits in Alpine ibex. Proc R Soc B 282:20141873

    Article  PubMed  Google Scholar 

  • Brambilla A, Keller L, Bassano B, Grossen C (2018) Heterozygosity-fitness correlation at the major histocompatibility complex despite low variation in Alpine ibex (Capra ibex). Evol Appl 11:631–644

    Article  PubMed  Google Scholar 

  • Bubenik AB (1985) Reproductive strategies in Cervids. R Soc NZ Bull 22:367–373

    Google Scholar 

  • Cai XQ, Yang M, Zhong WQ, Wang DH (2009) Humoral immune response suppresses reproductive physiology in male Brandt’s voles (Lasiopodomys brandtii). Zoology 112:69–75

    Article  CAS  PubMed  Google Scholar 

  • Canaza-Cayo AW, Huanca T, Gutierrez JP, Beltran PA (2015) Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama). Small Rumin Res 130:81–89

    Article  Google Scholar 

  • Charbonnel N, Bryja J, Galan M, Deter J, Tollenaere C, Chaval Y, Morand S, Cosson JF (2010) Mhc class II heterozygosity and secondary sexual trait in the montane water vole. Evol Appl 3:279–290

    Article  PubMed  PubMed Central  Google Scholar 

  • Childers CP, Newkirk HL, Honeycutt DA, Ramlachan N, Muzney DM, Sodergren E, Gibbs RA, Weinstock GM, Womack JE, Skow LC (2005) Comparative analysis of the bovine MHC class IIb sequence identifies inversion breakpoints and three unexpected genes. Anim Genet 37:121–129

    Article  Google Scholar 

  • Clutton-Brock TH (1988) Reproductive success: studies of individual variation in contrasting breeding systems. The University of Chicago Press, Chicago, IL, USA

    Google Scholar 

  • Clutton-Brock TH (1989) Review lecture: mammalian mating systems. Proc R Soc Lond B 236:339–372

    Article  CAS  PubMed  Google Scholar 

  • Clutton-Brock TH (2007) Sexual selection in males and females. Science 318:1882–1885

    Article  CAS  PubMed  Google Scholar 

  • Clutton-Brock TH (2009) Sexual selection in females. Anim Behav 77:3–11

    Article  Google Scholar 

  • Clutton-Brock TH, Huchard E (2013) Social competition and selection in males and females. PhilOS Trans R Soc Lond B 368:20130074

    Article  CAS  Google Scholar 

  • Cook RC, Cook JG, Mech LD (2004) Nutritional condition of Northern Yellowstone elk. J Mammal 85:714–722

    Article  Google Scholar 

  • Denzin LK (2013) Inhibition of HLA-DM mediated MHC class II peptide loading by HLA-DO promotes self-tolerance. Front Immunol 4:00465

    Article  Google Scholar 

  • Ditchkoff SS (2011) Anatomy and physiology. In: Hewitt DG (ed) Biology and management of white-tailed deer. CRC Press, Boca Raton, pp 43–74

    Google Scholar 

  • Ditchkoff SS, Lochmiller RL, Masters RE, Hoofer SR, Van Den Bussche RA (2001) Major-histocompatibility-complex-associated variation in secondary sexual traits of white-tailed deer (Odocoileus virginianus): evidence for good-genes advertisement. Evolution 55:616–625

    Article  CAS  PubMed  Google Scholar 

  • Djilali-Saiah I, Caillat-Zucman S, Schmitz J, Chaves-Vieira ML, Bach JF (1994) Polymorphism of antigen processing (TAP, LMP) and HLA class II genes in celiac disease. Hum Immunol 40:8–16

    Article  CAS  PubMed  Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52

    Article  CAS  PubMed  Google Scholar 

  • Dreiss AN, Cote J, Richard M, Federici P, Clobert J (2010) Age- and sex-specific response to population density and sex ratio. Behav Ecol 21:356–364

    Article  Google Scholar 

  • Dunn PO, Bollmer JL, Freeman-Gallant CR, Whittingham LA (2012) MHC variation is related to a sexually selected ornament, survival, and parasite resistance in common yellowthroats. Evolution 67:679–687

    Article  PubMed  Google Scholar 

  • Emlen ST, Oring LW (1977) Ecology, sexual selection, and evolution of mating systems. Science 197:215–223

    Article  CAS  PubMed  Google Scholar 

  • Fair JM, Hansen ES, Ricklefs RE (1999) Growth, developmental stability and immune response in juvenile Japanese quails (Coturnix coturnix japonica). Proc R Soc Lond B 266:1735–1742

    Article  CAS  Google Scholar 

  • Fernandez-de-Mera IG, Vicente J, Naranjo V, Fierro Y, Garde JJ, de la Fuente J, Gortazar C (2009) Impact of major histocompatibility complex class II polymorphisms on Iberian red deer parasitism and life history traits. Infect Genet Evol 9:1232–1239

    Article  CAS  PubMed  Google Scholar 

  • Fernando MMA, Stevens CR, Walsh EC, De Jager PL, Goyette P, Plenge RM, Vyse TJ, Rioux JD (2008) Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet 4:e1000024

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferreira C, Singh Y, Furmanski AL, Wong FS, Garden OA, Dyson J (2009) Non-obese diabetic mice select a low-diversity repertoire of natural regulatory T-cells. Proc Natl Acad Sci USA 106:8320–8325

    Article  CAS  PubMed  Google Scholar 

  • Festa-Bianchet M (1989) Individual differences, parasites, and the costs of reproduction for bighorn ewes (Ovis canadensis). J Anim Ecol 58:785–795

    Article  Google Scholar 

  • Foley PJ, Lympany PA, Puscinska E, Zielinski J, Welsh KI, du Bois RM (1999) Analysis of MHC encoded antigen-processing genes TAP1 and TAP2 polymorphisms in sarcoidosis. Am J Respir Crit Care Med 160:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Liu K, Liu H, Blair HT, Li G, Chen C, Tan P, Ma RZ (2010) A complete DNA sequence map of the ovine major histocompatibility complex. BMC Genomics 11:466

    Article  PubMed  PubMed Central  Google Scholar 

  • Geist V (1966) The evolution of horn-like organs. Behavior 27:175–214

    Article  Google Scholar 

  • Geist V (1974) On the relationship of social evolution and ecology in ungulates. Am Zool 14:205–220

    Article  Google Scholar 

  • Gill TJ, Kunz HW (1979) Gene complex controlling growth and fertility linked to the major histocompatibility complex in the rat. Am J Pathol 96:185–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graham AL, Allen JE, Read AF (2005) Evolutionary causes and consequences of immunopathology. Annu Rev Ecol Evol Syst 36:373–397

    Article  Google Scholar 

  • Grogan KE (2014) Exploring the impacts of major histocompatibility complex variation on fitness in the ring-tailed lemur (Lemur catta): parasite resistance, survival, mate choice and olfactory ornamentation, and reproduction. Ph.D. dissertation, Duke University, Durham NC, USA.

  • Hanssen SA (2006) Costs of an immune challenge and terminal investment in a long-lived bird. Ecology 87:2440–2446

    Article  PubMed  Google Scholar 

  • Hanssen SA, Hasselquist D, Folstad I, Erikstad KE (2004) Costs of immunity: immune responsiveness reduces survival in a vertebrate. Proc R Soc Lond B 271:925–930

    Article  Google Scholar 

  • Hedrick PW (1994) Evolutionary genetics of the major histocompatibility complex. Am Nat 143:945–964

    Article  Google Scholar 

  • Hewitt DG (2011) Nutrition. In: Hewitt DG (ed) Biology and management of white-tailed deer. CRC Press, Boca Raton, pp 75–106

    Chapter  Google Scholar 

  • Hogg JT (1984) Mating in bighorn sheep: multiple creative male strategies. Science 225:526–529

    Article  CAS  PubMed  Google Scholar 

  • Huchard E, Raymond M, Benavides J, Marshall H, Knapp LA, Cowlishaw G (2010) A female signal reflects MHC genotype in a social primate. BMC Evol Biol 10:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes AL, Nei M (1989) Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci USA 86:948–962

    Article  Google Scholar 

  • Hughes AL, Nei M (1992) Maintenance of the MHC polymorphism. Nature 355:402–403

    Article  CAS  PubMed  Google Scholar 

  • Ilmonen P, Taarna T, Hasselquist D (2000) Experimentally activated immune defence in female pied flycatchers results in reduced breeding success. Proc R Soc Lond B 267:665–670

    Article  CAS  Google Scholar 

  • Ilmonen P, Penn DJ, Damjanovich K, Morrison L, Ghotbi L, Potts WK (2007) Major histocompatibility complex heterozygosity reduces fitness in experimentally infected mice. Genetics 176:2501–2508

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivy-Israel NMD, Moore CE, Schwartz TS, Ditchkoff SS (2020) Characterization of two MHC II genes (DOB, DRB) in white-tailed deer (Odocoileus virginianus). BMC Genet 2:1–17

    Google Scholar 

  • Jacobson HA, Kroll JC, Browning RW, Koerth BH, Conway MH (1997) Infrared-triggered cameras for censing white-tailed deer. Wildl Soc Bull 25:547–556

    Google Scholar 

  • Janeway CA Jr, Travers P, Walport M (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland Science, New York, NY

    Google Scholar 

  • Jarman PJ (1974) The social organization of antelope in relation to their ecology. Behaviour 48:215–266

    Article  Google Scholar 

  • Johnson H, Bleich V, Krausman P, Koprowski J (2007) Effects of antler breakage on mating behavior in male tule elk (Cervus elaphus nannodes). Eur J Wildl Res 53:9–15

    Article  Google Scholar 

  • Kamiya T, O’Dwyer K, Westerdahl H, Senior A, Nakagawa S (2014) A quantitative review of MHC-based mating preference: the role of diversity and dissimilarity. Mol Ecol 23:5151–5163

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick HJ, DeNicola AJ, Ellingwood MR (1996) Comparison of standard and transmitter-equipped darts for capturing white-tailed deer. Wildl Soc Bull 24:306–310

    Google Scholar 

  • King G (1989) Unifying political methodology: the likelihood theory of statistical inference. Cambridge University Press, New York, NY, USA

    Google Scholar 

  • Klasing KC, Laurin DE, Peng RK, Fry DM (1987) Immunologically mediated growth depression in chicks: influence of feed intake, corticosterone and interleukin-1. J Nutr 117:1629–1637

    Article  CAS  PubMed  Google Scholar 

  • Kokko H, Rankin DJ (2006) Lonely hearts or sex in the city? Density-dependent effects in mating systems. Philos Trans R Soc B Biol Sci 361:319–334

    Article  Google Scholar 

  • Kokko H, Jennions MD, Brooks R (2006) Unifying and testing models of sexual selection. Annu Rev Ecol Evol Syst 37:43–66

    Article  Google Scholar 

  • Kounig B, Riester J, Markl H (1988) Maternal care in house mice (Mus musculus): II. The energy cost of lactation as a function of litter size. J Zool 216:195–210

    Article  Google Scholar 

  • Laird AK (1965) Dynamics of relative growth. Growth 29:249–263

    CAS  PubMed  Google Scholar 

  • Leberg PL, Brisbin IL Jr, Smith MH, White GC (1989) Factors affecting the analysis of growth patterns of large mammals. J Mammal 70:275–283

    Article  Google Scholar 

  • Lesage L, Crete M, Huot J, Ouellet JP (2001) Evidence for a trade-off between growth and body reserves in northern white-tailed deer. Oecologia 126:30–41

    Article  PubMed  Google Scholar 

  • Lindstedt SL, Boyce MS (1985) Seasonality, fasting endurance, and body size in mammals. Am Nat 125:873–878

    Article  Google Scholar 

  • Loison A, Gaillard JM, Pelabon C, Yoccoz NG (1999) What factors shape sexual size dimorphism in ungulates? Evol Ecol Res 1:611–633

    Google Scholar 

  • McClelland EE, Penn DJ, Potts WK (2003) Major histocompatibility complex heterozygote superiority during coinfection. Infect Immun 71:2079–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McElligott AG, Gammell MP, Harty HC, Paini DR, Murphy DT, Walsh JT, Hayden TJ (2001) Sexual size dimorphism in fallow deer (Dama dama): do larger, heavier males gain greater mating success? Behav Ecol Sociobiol 49:266–272

    Article  Google Scholar 

  • Mellins ED, Stern LJ (2014) HLA-DM and HLA-DO, key regulators of MHC-II processing and presentation. Curr Opin Immunol 26:115–122

    Article  CAS  PubMed  Google Scholar 

  • Mikko S, Andersson L (1995) Low major histocompatibility complex class II diversity in European and North American moose. Proc Natl Acad Sci USA 92:4259–4263

    Article  CAS  PubMed  Google Scholar 

  • Mikko S, Lewin HA, Andersson L (1997) A phylogenetic analysis of cattle DRB3 alleles with a deletion of codon 65. Immunogenetics 47:23–29

    Article  CAS  PubMed  Google Scholar 

  • Miller BF, Muller LI, Storms TN, Ramsay EC, Osborn DA, Warren RJ, Miller KV, Adams KA (2003) A comparison of carfentanil/xylazine and Telazol/xylazine for immobilization of white-tailed deer. J Wildl Dis 39:851–858

    Article  CAS  PubMed  Google Scholar 

  • Miller BF, Muller LI, Doherty T, Osborn DA, Miller KV, Warren RJ (2004) Effectiveness of antagonists for tiletamine-zolazepam/xylazine immobilization in female white-tailed deer. J Wildl Dis 40:533–537

    Article  CAS  PubMed  Google Scholar 

  • Milner J, Ward J, Keane-Myers A, Min B, Paul WE (2007) Repertoire-dependent immunopathology. J Autoimmun 29:257–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moins-Teisserenc H, Semana G, Alizadeh M, Loiseau P, Bobrynina V, Deschamps I, Edan G, Birebent B, Genetet B, Sabouraud O, Charron D (1995) TAP2 gene polymorphism contributes to genetic susceptibility to multiple sclerosis. Hum Immunol 42:195–202

    Article  CAS  PubMed  Google Scholar 

  • Møller AP, Saino N (1994) Parasites, immunology of hosts, and host sexual selection. J Parasitol 80:850–858

    Article  PubMed  Google Scholar 

  • Mysterud A, Langvatn R, Stenseth NC (2004) Patterns of reproductive effort in male ungulates. J Zool 264:209–215

    Article  Google Scholar 

  • Nelder JA (1961) The fitting of a generalization of the logistic curve. Biometrics 17:89–110

    Article  Google Scholar 

  • Nesbitt WH, Wright PL, Buckner EL, Byers CR, Reneau J (2009) Measuring and scoring North American big game tropies, 3rd edn. Boone and Crockett Club, Missoula, MT

    Google Scholar 

  • Neuman TJ, Newbolt CH, Ditchkoff SS, Steury TD (2016) Microsatellites reveal plasticity in reproductive success of white-tailed deer. J Mammal 97:1441–1450

    Article  Google Scholar 

  • Newbolt CH, Acker PK, Neuman TJ, Hoffman SI, Ditchkoff SS, Steury TD (2017) Factors influencing reproductive success in male white-tailed deer. J Wildl Manag 81:206–217

    Article  Google Scholar 

  • Nikolich-Zugich J, Slifka MK, Messaoudi I (2004) The many important facets of T-cell repertoire diversity. Nat Rev Immunol 4:123–132

    Article  CAS  PubMed  Google Scholar 

  • Norris K, Evans MR (2000) Ecological immunology: life history trade-offs and immune defense in birds. Behav Ecol 11:19–26

    Article  Google Scholar 

  • Olsson M, Madsen T, Wapstra E, Silverin B, Ujvari B, Wittzell H (2005) MHC, health, color, and reproductive success in sand lizards. Behav Ecol Sociobiol 58:289–294

    Article  Google Scholar 

  • Overton WS (1969) Estimating the numbers of animals in wildlife populations, 3rd edn. The Wildlife Society, Washington, D.C.

    Google Scholar 

  • Parker KL, White RG, Gillingham MP, Holleman DF (1990) Comparison of energy metabolism in relation to daily activity and milk consumption by caribou and muskox neonates. Can J Zool 68:106–114

    Article  Google Scholar 

  • Pelabon C, Komers PE, Birgersson B, Ekvall K (1999) Social interactions of yearling male fallow deer during rut. Ethology 105:247–258

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2018) nlme: linear and nonlinear mixed effects models. R package version 3.1–137. https://CRAN.R-project.org/package=nlme/.

  • Poluektov YO, Kim A, Sadegh-Nasseri S (2013) HLA-DO and its role in MHC class II antigen presentation. Front Immunol 4:00260

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Ralls K (1977) Sexual dimorphism in mammals: avian models and unanswered questions. Am Nat 111:917–938

    Article  Google Scholar 

  • Rose KE (1995) Factors affecting lifetime reproductive success in red deer stags (Cervus elaphus). Ph.D. thesis, University of Cambridge.

  • Russell DE, Gerhart KL, White RG, Van De Wetering D (1998) Detection of early pregnancy in caribou: evidence for embryonic mortality. J Wildl Manag 62:1066–1075

    Article  Google Scholar 

  • Sauermann U, Nurnberg P, Bercovitch FB, Berard JD, Trefilov A, Widdig A, Kessler M, Schmidtke J, Krawczak M (2001) Increased reproductive success of MHC class II heterozygous males among free-ranging rhesus macaques. Hum Genet 108:249–254

    Article  CAS  PubMed  Google Scholar 

  • Schad J, Dechmann DKN, Voigt CC, Sommer S (2012) Evidence for the ‘Good Genes’ model: association of MHC class II DRB alleles with ectoparasitism and reproductive state in the neotropical lesser bulldog bat, Noctilio albiventris. PLoS ONE 7(5):e37101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schook LB, Lamont SJ (1996) The major histocompatibility complex region of domestic animal species. CRC Press, Boca Raton FL

    Google Scholar 

  • Severinghaus CW (1949) Tooth development and wear as criteria of age in white-tailed deer. J Wildl Manag 13:195–216

    Article  Google Scholar 

  • Sikes RS, Gannon WL (2011) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 92:235–253

    Article  Google Scholar 

  • Smith S, Mang T, de Bellocq JG, Schaschl H, Zeitlhofer C, Hacklander K, Suchentrunk F (2010) Homozygosity at a class II MHC locus depresses female reproductive ability in European brown hares. Mol Ecol 19:4131–4143

    Article  PubMed  Google Scholar 

  • Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Soundravally R, Hoti SL (2008) Polymorphisms of the TAP 1 and 2 gene may influence clinical outcome of primary Dengue viral infection. Scand J Immunol 67:618–625

    Article  CAS  PubMed  Google Scholar 

  • Strassmann BI, Gillespie B (2002) Life-history theory, fertility and reproductive success in humans. Proc R Soc Lond B 269:553–562

    Article  Google Scholar 

  • Strickland BK, Jones PD, Demarais S, Dacus CM, Dillard JR, Jacobson H (2013) Estimating Boone and Crockett scores for white-tailed deer from simple antler measurements. Wildl Soc Bull 37:458–463

    Article  Google Scholar 

  • Swarbrick PA, Schwaiger FW, Epplen JT, Buchan GS, Griffin JFT, Crawford AM (1995) Cloning and sequencing of expressed DRB genes of the red deer (Cervus elaphus) Mhc. Immunogenetics 42:1–9

    Article  CAS  PubMed  Google Scholar 

  • Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124:967–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaker MYC, Bilkei G (2005) Lactation weight loss influences subsequent reproductive performance of sows. Anim Reprod Sci 88:309–318

    Article  CAS  PubMed  Google Scholar 

  • Thalmann JC, Bowyer RT, Aho KA, Weckerly FW, McCullough DR (2015) Antler and body size in black-tailed deer: an analysis of cohort effects. Adv Ecol 2015:156041

    Google Scholar 

  • Thompson CB, Holter JB, Hayes HH, Silver H, Urban WE (1973) Nutrition of white-tailed deer: energy requirements of fawns. J Wildl Manag 37:301–311

    Article  Google Scholar 

  • Van Den Berg HA, Rand DA (2003) Antigen presentation on MHC molecules as a diversity filter that enhances immune efficacy. J Theor Biol 224:249–267

    Article  PubMed  Google Scholar 

  • Van Den Bussche RA, Hoofer SR, Lochmiller RL (1999) Characterization of Mhc-DRB allelic diversity in white-tailed deer (Odocoileus virginianus) provides insight into Mhc-DRB allelic evolution within Cervidae. Immunogenetics 49:429–437

    Article  Google Scholar 

  • Van Den Bussche RA, Ross TG, Hoofer SR (2002) Genetic variation at a major histocompatibility locus within and among populations of white-tailed deer (Odocoileus virginianus). J Mammal 83:31–39

    Article  Google Scholar 

  • Vidovic D (1989) Elimination of self-tolerogen turns nonresponder mice into responders. Immunogenetics 30:194–199

    Article  CAS  PubMed  Google Scholar 

  • Vidovic D, Matzinger P (1988) Unresponsiveness to a foreign antigen can be caused by self-tolerance. Nature 336:222–225

    Article  CAS  PubMed  Google Scholar 

  • Von Bertalanffy L (1938) A quantitative theory of organic growth (inquiries on growth laws II). Hum Biol 10:181–213

    Google Scholar 

  • Von Bertalanffy L (1957) Quantitative laws in metabolism and growth. Q Rev Biol 32:217–230

    Article  Google Scholar 

  • Von Schantz T, Wittzell H, Goransson G, Grahn M, Persson K (1996) MHC genotype and male ornamentation: genetic evidence for the Hamilton-Zuk model. Proc R Soc Lond B 263:265–271

    Article  Google Scholar 

  • Von Schantz T, Wittzell H, Goransson G, Grahn M (1997) Mate choice, male condition-dependent ornamentation and MHC in the pheasant. Hereditas 127:133–140

    Article  Google Scholar 

  • Wan QH, Zeng CJ, Ni XW, Pan HJ, Fang SG (2009) Giant panda genomic data provide insight into the birth-and-death process of mammalian major histocompatibility complex class II genes. PLoS ONE 4:e4147

    Article  PubMed  PubMed Central  Google Scholar 

  • Weckerly FW (1998) Sexual-size dimorphism: influence of mass and mating systems in the most dimorphic mammals. J Mammal 79:33–52

    Article  Google Scholar 

  • West-Eberhard MJ (1979) Sexual selection, social competition, and evolution. Proc Am Phil Soc 123:222–234

    Google Scholar 

  • Woelfing B, Traulsen A, Milinski M, Boehm T (2009) Does intra-individual major histocompatibility complex diversity keep a golden mean? Philos Trans R Soc London B 364:117–128

    Article  Google Scholar 

  • Wright S (1938) Size of population and breeding structure in relation to evolution. Science 87:430–431

    Google Scholar 

  • Zullinger EM, Ricklefs RE, Redford KM, Mace GM (1984) Fitting sigmoidal equations to mammalian growth curves. J Mamm 65:607–636

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the entire team of volunteers who assisted with data collection, especially V. Jackson for helping with the maintenance of the deer facility. We would also like to thank Code Blue Scents, Moultrie Feeders, EBSCO Industries and Record Rack for their support. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (Auburn University Institutional Animal Care and Use Committee; 2008-1417, 2008-1421, 2010-1785, 2011-1971, 2013-2372, 2014-2521, 2016-2964, and 2016-2985).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natascha M. D. Ivy-Israel.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivy-Israel, N.M.D., Moore, C.E., Schwartz, T.S. et al. Association between sexually selected traits and allelic distance in two unlinked MHC II loci in white-tailed deer (Odocoileus virginianus). Evol Ecol 35, 513–535 (2021). https://doi.org/10.1007/s10682-021-10108-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-021-10108-x

Keywords

Navigation