Skip to main content

Advertisement

Log in

Long-Term Sediment, Carbon, and Nitrogen Accumulation Rates in Coastal Wetlands Impacted by Sea Level Rise

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Coastal wetlands provide important ecosystem services, such as carbon and nitrogen sequestration and flood protection, but are vulnerable to increasing sea levels. We examined the vulnerability of coastal wetlands to rising sea levels using radioisotopes (210Pb and 137Cs) to estimate long-term (~100 years) soil accretion rates. We also estimated carbon and nitrogen accumulation rates. We collected soil cores from four transects along the Albemarle-Pamlico Peninsula of North Carolina, an area experiencing high rates of sea level rise. Transects included four wetland types: forested, transitional between forest and marsh, brackish marsh, and estuarine open water. Of the 16 sites we sampled, we were able to estimate accretion rates for 14 using 210Pb and four cores using 137Cs. Only one site had a vertical accretion rate higher than the local rate of sea level rise (0.45 cm year−1): a transitional wetland site with fine sediment sourced from a nearby canal (0.88 cm year−1). Mean vertical accretion across all sites was 0.20 cm year−1. Our results show that most wetlands in the area are vulnerable to future inundation due to current rates of sea level rise. Extrapolating from our measurement to the entire peninsula suggests that if wetlands have room to migrate and transition from forest to marsh, the potential for sea level rise–induced loss of C and N accumulation will be 2–20%, compared to 35–88% when not accounting for wetland transitions, illustrating the importance of allowing space for wetlands to migrate in these changing landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anisfield, S.C., K.R. Cooper, and A.C. Kemp. 2017. Upslope development of a tidal marsh as a function of upland land use. Global Change Biology 23 (2): 755–766. https://doi.org/10.1111/gcb.13398.

    Article  Google Scholar 

  • Appleby, P.G., and F. Oldfield. 1992. Applications of lead-210 to sedimentation studies. In Uranium-series disequilibrium: Applications to earth, marine, and environmental sciences, ed. M. Ivanovich and R.S. Harmon, vol. 910, 2nd ed. Oxford, U.K.: Clarendon Press.

    Google Scholar 

  • Ardón, M., J.L. Morse, B.P. Colman, and E.S. Bernhardt. 2013. Drought-induced saltwater incursion leads to increased wetland nitrogen export. Global Change Biology 19 (10): 19–2985. https://doi.org/10.1111/gcb.12287.

    Article  Google Scholar 

  • Baustian, Melissa M., Camille L. Stagg, Carey L. Perry, Leland C. Moss, Tim J.B. Carruthers, and Mead Allison. 2017. Relationships between salinity and short-term soil carbon accumulation rates from marsh types across a landscape in the Mississippi River Delta. Wetlands 37 (2): 313–324. https://doi.org/10.1007/s13157-016-0871-3.

    Article  Google Scholar 

  • Bhattachan, A., M.D. Jurjonas, A.C. Moody, P.R. Morris, G.M. Sanchez, L.S. Smart, P.J. Taillie, R.E. Emanuel, and E.L. Seekamp. 2018. Sea level rise impacts on rural coastal social-ecological systems and the implications for decision making. Environmental Science and Policy 90: 122–134. https://doi.org/10.1016/j.envsci.2018.10.006.

    Article  Google Scholar 

  • Blankespoor, B., S. Dasgupta, and B. Laplante. 2014. Sea-level rise and coastal wetlands. Ambio 43 (8): 996–1005. https://doi.org/10.1007/s13280-014-0500-4.

    Article  Google Scholar 

  • Brinson, M.M., R.R. Christian, and L.K. Blum. 1995. Multiple states in the sea-level induced transition from terrestrial forest to estuary. Estuaries 18 (4): 648–659.

    Article  CAS  Google Scholar 

  • Carter, M.R. 1993. Soil sampling and methods of analysis. Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Cheng, Xiaoli, Yiqi Luo, Jiquan Chen, Guanghui Lin, Jiakuan Chen, and Bo Li. 2006. Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine island. Soil Biology & Biochemistry 38 (12): 3380–3386. https://doi.org/10.1016/j.soilbio.2006.05.016.

    Article  CAS  Google Scholar 

  • Colgan, P.A., P. McCann, E.J. McGee, and I.R. McAulay. 1993. Short and long-term losses of 137Cs from peatland soils. Irish Journal of Agricultural and Food Research 32: 37–46.

    CAS  Google Scholar 

  • Corbett, D.R., and J.P. Walsh. 2015. 210 Lead and 137 cesium establishing a chronology for the last century. In Handbook of sea-level research, ed. I. Shennan, A.J. Long, and B.P. Horton. John Wiley & Sons, Inc.

  • Corbett, D.R., D. Vance, E. Letrick, D. Mallinson, and S. Culver. 2007. Decadal-scale sediment dynamics and environmental change in the Albemarle Estuarine System, North Carolina. Estuarine Coastal and Shelf Science 71: 729–771.

    Article  Google Scholar 

  • Craft, C.B. 2007. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes. Limnology and Oceanography 52 (3): 1220–1230. https://doi.org/10.4319/lo.2007.52.3.1220.

    Article  CAS  Google Scholar 

  • Craft, C.B. 2012. Tidal freshwater forest accretion does not keep pace with sea level rise. Global Change Biology 18 (12): 3615–3623. https://doi.org/10.1111/gcb.12009.

    Article  Google Scholar 

  • Craft, C.B., and W.P. Casey. 2000. Sediment and nutrient accumulation in floodplain and depressional freshwater wetlands of Georgia, USA. Wetlands 20: 323–332.

    Article  Google Scholar 

  • Craft, C.B., J. Clough, J. Ehman, S. Joye, R. Park, S. Pennings, H. Guo, and M. Machmuller. 2009. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment 7 (2): 73–78.

    Article  Google Scholar 

  • Davies, B.E. 1974. Loss-on-ignition as an estimate of soil organic matter. Soil Science Society of America Journal 38 (1): 150–151.

    Article  Google Scholar 

  • Drexler, J.Z., C.C. Fuller, J. Orlando, A. Salas, F.C. Wurster, and J.A. Duberstein. 2017. Estimation and uncertainty of recent carbon accumulation and vertical accretion in drained and undrained forested peatlands of the Southeastern USA. Journal of Geophysical Research-Biogeosciences 122 (10): 2563–2579. https://doi.org/10.1002/2017JG003950.

    Article  CAS  Google Scholar 

  • Ensign, S.H., and G.B. Noe. 2018. Tidal extension and sea­level rise: recommendations for a research agenda. Frontiers in Ecology and the Environment 16 (1): 37–43. https://doi.org/10.1002/fee.1745.

    Article  Google Scholar 

  • Ensign, S.H., C.R. Hupp, G.B. Noe, K.W. Krauss, and C.L. Stagg. 2014. Sediment accretion in tidal freshwater forests and oligohaline marshes of the Waccamaw and Savannah rivers, USA. Estuaries and Coasts 37 (5): 1107–1119. https://doi.org/10.1007/s12237-013-9744-7.

    Article  CAS  Google Scholar 

  • Eulie, D.O., D.R. Corbett, and J.P. Walsh. 2018. Shoreline erosion and decadal sediment accumulation in the Tar-Pamlico estuary, North Carolina, USA: A source-to-sink analysis. Estuarine, Coastal and Shelf Science 202: 246–258. https://doi.org/10.1016/j.ecss.2017.10.011.

    Article  CAS  Google Scholar 

  • Giese, G.L., H.B. Wilder, and G.G. Parker. 1985. Hydrology of major estuaries and sounds of North Carolina. Raleigh, NC: USGS Report.

    Google Scholar 

  • Harned, D.A., and M.S. Davenport. 1990. Water quality trends and basin activities and characteristics for the Albemarle-Pamlico estuarine system, North Carolina and Virginia. US Geological Survey Report, Raleigh, NC

  • Heath, R.C. 1975. Hydrology of the Albemarle-Pamlico region, North Carolina. US Geological Survey Report, Raleigh, NC.

  • Henman, J., and B. Poulter. 2008. Inundation of freshwater peatlands by sea level rise: Uncertainty and potential carbon cycle feedbacks. Journal of Geophysical Research: Biogeosciences 113 (G1): 1–11. https://doi.org/10.1029/2006JG000395.

    Article  CAS  Google Scholar 

  • Herbert, E.R., P. Boon, A.J. Burgin, S.C. Neubauer, R.B. Franklin, M. Ardón, K.N. Hopfensperger, L.P.M. Lamers, and P. Gell. 2015. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6: 206.

    Article  Google Scholar 

  • Holmquist, J.R., L. Windham-Myers, N. Bliss, S. Crooks, J.T. Morris, J.P. Megonigal, T. Troxler, D. Weller, J. Callaway, J. Drexler, M.C. Ferner, M.E. Gonneea, K.D. Kroeger, L. Schile-Beers, I. Woo, K. Buffington, J. Breithaupt, B.M. Boyd, L.N. Brown, N. Dix, L. Hice, B.P. Horton, G.M. MacDonald, R.P. Moyer, W. Reay, T. Shaw, E. Smith, J.M. Smoak, C. Sommerfield, K. Thorne, D. Velinsky, E. Watson, K.W. Grimes, and M. Woodrey. 2018. Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States. Scientific Reports 8 (1): 9478. https://doi.org/10.1038/s41598-018-26948-7.

    Article  CAS  Google Scholar 

  • Horton, B.P., W.R. Peltier, S.J. Culver, R. Drummond, S.E. Engelhart, A.C. Kemp, and D. Mallinson. 2009. Holocene sea-level changes along the North Carolina Coastline and their implications for glacial isostatic adjustment models. Quaternary Science Reviews 28 (17-18): 1725–1736. https://doi.org/10.1016/j.quascirev.2009.02.002.

    Article  Google Scholar 

  • Kemp, A.C., B.P. Horton, J.P. Donnelly, and M.E. Mann. 2011. Climate related sea-level variations over the past two millennia. Proceedings of the National Academy of Sciences 108 (27): 11017–11022. https://doi.org/10.1073/pnas.1015619108.

    Article  Google Scholar 

  • Kirwan, M.L., and J.P. Megonigal. 2013. Tidal wetlands stability in the face of human impacts and sea-level rise. Nature 504 (7478): 53–60.

    Article  CAS  Google Scholar 

  • Kopp, R.E., B.P. Horton, A.C. Kemp, and C. Tebaldi. 2015. Past and future sea-level rise along the coast of North Carolina, USA. Climatic Change 132 (4): 693–707. https://doi.org/10.1007/s10584-015-1451-x.

    Article  CAS  Google Scholar 

  • Krauss, K.W., and J.L. Whitbeck. 2012. Soil greenhouse gas fluxes during wetland forest retreat along the Lower Savannah River, Georgia (USA). Wetlands 32 (1): 73–81. https://doi.org/10.1007/s13157-011-0246-8.

    Article  Google Scholar 

  • Lagomasino, David, D. Reide Corbett, and J.P. Walsh. 2013. Influence of wind-driven inundation and coastal geomorphology on sedimentation in two microtidal marshes, Pamlico River Estuary, NC. Estuaries and Coasts 36 (6): 1165–1180. https://doi.org/10.1007/s12237-013-9625-0.

    Article  CAS  Google Scholar 

  • Moorhead, K.K., and M.M. Brinson. 1995. Response of wetlands to rising sea-level in the lower coastal plain of North Carolina. Ecological Applications 5 (1): 261–271.

    Article  Google Scholar 

  • Moorman, M. C., K. R. Kolb, and S. Supack. 2014. Estuarine monitoring programs in the Albemarle Sound study area, North Carolina. U.S. Geological Survey Open File Report.

  • Morrissey, E.M., J.L. Gillespie, J.C. Morina, and R.B. Franklin. 2014. Salinity affects microbial activity and soil organic matter content in tidal wetlands. Global Change Biology 20 (4): 1351–1362. https://doi.org/10.1111/gcb.12431.

    Article  Google Scholar 

  • Natural Resources Conservation Service. 2009. Soil Survey Geographic (SSURGO) database for Tyrell County, North Carolina.

  • Neubauer, S.C., I.C. Anderson, and B.B. Neikirk. 2005. Nitrogen cycling and ecosystem exchanges in a Virginia tidal freshwater marsh. Estuaries 28 (6): 909–922. https://doi.org/10.1007/bf02696019.

    Article  CAS  Google Scholar 

  • Nittrouer, C.A., R.W. Sternberg, R. Carpenter, and J.T. Bennett. 1979. The use of Pb-210 geochronology as a sedimentological tool: Application to the Washington continental shelf. Marine Geology 31. Elsevier: 297–316. https://doi.org/10.1016/0025-3227(79)90039-2.

    Article  CAS  Google Scholar 

  • Noe, G.B., C.R. Hupp, C.E. Bernhardt, and K.W. Krauss. 2016. Contemporary deposition and long-term accumulation of sediment and nutrients by tidal freshwater forested wetlands impacted by sea level rise. Estuaries and Coasts 39 (4): 1006–1019. https://doi.org/10.1007/s12237-016-0066-4.

    Article  Google Scholar 

  • Pekel, J.-F., A. Cottam, N. Gorelick, and A.S. Belward. 2016. High-resolution mapping of global surface water and its long-term changes. Nature 540 (7633): 418–422.

    Article  CAS  Google Scholar 

  • Pennington, W., R.S. Cambray, and E.M. Fisher. 1973. Observations on lake sediments using fallout 137Cs as a tracer. Nature 242 (5396): 324–326.

    Article  CAS  Google Scholar 

  • Poulter, B., R.L. Feldman, M.M. Brinson, B.P. Horton, M.K. Orbach, S.H. Pearsall, E. Reyes, S.R. Riggs, and J.C. Whitehead. 2009. Sea-level rise research and dialogue in North Carolina: Creating windows for policy change. Ocean & Coastal Management 52 (3-4): 147–153. https://doi.org/10.1016/j.ocecoaman.2008.09.010.

    Article  Google Scholar 

  • Riggs, S.R., and D.V. Ames. 2003. Drowning the North Carolina coast: Sea level rise and estuarine dynamics. Raleigh, NC: North Carolina Sea Grant.

    Google Scholar 

  • Rogers, K., J.J. Kelleway, N. Saintilan, J.P. Megonigal, J.B. Adams, J.R. Holmquist, M. Lu, L. Schile-Beers, A. Zawadzki, D. Mazumder, and C.D. Woodroffe. 2019. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567 (7746): 91–95. https://doi.org/10.1038/s41586-019-0951-7.

    Article  CAS  Google Scholar 

  • Schieder, N.W., D.C. Walters, and M.L. Kirwan. 2018. Massive upland to wetland conversion compensated for historical marsh loss in Chesapeake Bay, USA. Estuaries and Coasts 41 (4): 940–951.

    Article  Google Scholar 

  • Schuerch, M., T. Spencer, S. Temmerman, M.L. Kirwan, C. Wolff, D. Lincke, C.J. Mcowen, et al. 2018. Future response of global coastal wetlands to sea-level rise. Nature 561 (7722): 231–234. https://doi.org/10.1038/s41586-018-0476-5.

    Article  CAS  Google Scholar 

  • Smith, J.N. 2001. Why should we believe 210Pb sediment geochronologies? Journal of Environmental Radioactivity 55 (2): 121–123. https://doi.org/10.1016/s0265-931x(00)00152-1.

    Article  CAS  Google Scholar 

  • Stahl, McKenna, Sarah Widney, and Christopher Craft. 2018. Tidal freshwater forests: Sentinels for climate change. Ecological Engineering 116. Elsevier: 104–109. https://doi.org/10.1016/j.ecoleng.2018.03.002.

    Article  Google Scholar 

  • Taillie, P.J., C.E. Moorman, B.R.E. Emanuel, and M. Ardón. 2019. Decadal-scale vegetation change driven by salinity at leading edge of rising sea level. Ecosystems. 22 (8): 1918–1930. https://doi.org/10.1007/s10021-019-00382-w.

    Article  CAS  Google Scholar 

  • Thornton, S.F., and J. McManus. 1994. Application of organic carbon and nitrogen stable isotopes and C/N ratios as source indicators of organic matter provenance in estuarine systems: Evidence from the Tay Estuary, Scotland. Estuarine, Coastal, and Shelf Science 38 (3): 219–233.

    Article  CAS  Google Scholar 

  • Tully, K., K. Gedan, R. Epanchin-Niell, A. Strong, E.S. Bernhardt, T. BenDor, M. Mitchell, J. Kominoski, T.E. Jordan, S.C. Neubauer, and N.B. Weston. 2019. The invisible flood: The chemistry, ecology, and social implications of coastal saltwater intrusion. Bioscience 69 (5): 368–378. https://doi.org/10.1093/biosci/biz027.

    Article  Google Scholar 

  • Ury, E.A., S.M. Anderson, R.K. Peet, E.S. Bernhardt, and J.P. Wright. 2019. Succession, regression and loss: does evidence of saltwater exposure explain recent changes in the tree communities of North Carolina’s Coastal Plain? Annals of Botany: 1–9. https://doi.org/10.1093/aob/mcz039.

  • Visconti, F., J.M. de Paz, and J.L. Rubio. 2010. What information does the electrical conductivity of soil water extracts of 1 to 5 ratio (w/v) provide for soil salinity assessment of agricultural irrigated lands? Geoderma 154 (3-4): 387–397.

    Article  CAS  Google Scholar 

  • Wen, Y., E.S. Bernhardt, W. Deng, W. Liu, J. Yan, E.M. Baruch, and C.M. Bergemann. 2019. Salt effects on carbon mineralization in southeastern coastal wetland soils of the United States. Geoderma 339. Elsevier: 31–39. https://doi.org/10.1016/j.geoderma.2018.12.035.

    Article  CAS  Google Scholar 

  • Weston, N.B. 2014. Declining sediments and rising seas: an unfortunate convergence for tidal wetlands. Estuaries and Coasts 37 (1): 1–23.

    Article  Google Scholar 

  • Weston, N.B., A.E. Giblin, G.T. Banta, C.S. Hopkinson, and J. Tucker. 2010. The effects of varying salinity on ammonium exchange in estuarine sediments of the Parker River, Massachusetts. Estuaries and Coasts 33 (4): 985–1003. https://doi.org/10.1007/s12237-010-9282-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Matt Stillwagon, Nick Payne, Charles Camp, and Anne Ditlevson for their help in the field and Kenneth Bridges, Megan Pendell, and Jacob Pace for their help in the lab.

Funding

Support was provided by NSF DEB-1713592 to M. Ardón.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Ardón.

Additional information

Communicated by Mead Allison

Supplementary Information

ESM 1

(DOCX 1297 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gundersen, G., Corbett, D.R., Long, A. et al. Long-Term Sediment, Carbon, and Nitrogen Accumulation Rates in Coastal Wetlands Impacted by Sea Level Rise. Estuaries and Coasts 44, 2142–2158 (2021). https://doi.org/10.1007/s12237-021-00928-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-021-00928-z

Keywords

Navigation