Skip to main content

Advertisement

Log in

ATSAT: a MATLAB-based software for multi-satellite altimetry data analysis

  • Software Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Today, satellite altimetry is capable of observing the instantaneous sea level and is regarded as a standard tool in the study of waters level variations on both regional and global scales. In this research, we have introduced a software package under MATLAB called ATSAT, which is used to process the satellite altimetry data. ATSAT is able to process the observations of five satellites, namely Jason-1, Jason-2, Jason-3, Saral and Sentinel-3. This software program has certain capabilities: 1) Reading the observations related to the five satellites in the NetCDF format 2) Producing the time series obtained from the observations of each satellite at any desired point 3) Analyzing the outlier detection in the time series 4) Estimating the weight matrix pertinent to each time series using the Least Square Variance Components Estimation (LS-VCE) method 5) Considering the two noise models of White and White + Flicker for the variance components estimation and formation of the weight matrix for each time series 6) Estimating the average water level, as well as the amplitude of 22 main tide components at any desired point 7) Extracting the available frequencies in each time series using the Least Square Harmonic Estimation (LS-HE) method in the two modes of univariate and multivariate, and finally 8) Calculating the radial orbital error using the crossover adjustment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amiri-Simkooei AR, Zaminpardaz S, Sharifi MA (2014) Extracting tidal frequencies using multivariate harmonic analysis of sea level height time series. J Geod 88(10):975–988

    Article  Google Scholar 

  • Amiri-Simkooei AR, Asgari J, Zangeneh-Nejad F, Zaminpardaz S (2012) Basic concepts of optimization and design of geodetic networks. J Surv Eng 138(4):172–183

    Article  Google Scholar 

  • Amiri-Simkooei A (2007) Least-squares variance component estimation: theory and GPS applications. (Doctoral dissertation, TU Delft, Delft University of Technology)

  • Andersen OB, Knudsen P (2014) The DTU13 MSS (mean sea surface) and MDT (mean dynamic topography) from 20 years of satellite altimetry. Paper presented at the 3rd IGFS symposium, Shanghai, June 30–July 6 2014

  • Barnett V, Lewis T (1984) Outliers in statistical data. osd

  • Boon JD, Kiley KP (1978) Harmonic analysis and tidal prediction by the method of least squares: a User's manual

  • Bos MS, Fernandes RMS, Williams SDP, Bastos L (2013) Fast error analysis of continuous GNSS observations with missing data. J Geod 87(4):351–360. https://doi.org/10.1007/s00190-012-0605-0

    Article  Google Scholar 

  • Calmant S, Seyler F, Cretaux JF (2008) Monitoring continental surface waters by satellite altimetry. Surv Geophys 29(4–5):247–269

    Article  Google Scholar 

  • Carayon G, Steunou N, Courrière J, Thibaut P (2003) Poseidon-2 radar altimeter design and results of in-flight performances. Mar Geod 26:159–165

    Article  Google Scholar 

  • Cheng, K. C. (2005). Analysis of water level measurements using GPS (Doctoral dissertation, The Ohio State University)

  • Davies L, Gather U (1993) The identification of multiple outliers. J Am Stat Assoc 88(423):782–792

    Article  Google Scholar 

  • Deng X, Griffin DA, Ridgway K, Church JA, Featherstone WE, White N, Cahill M (2011) Satellite radar altimetry for geodetic, oceanographic and climate change studies in Australian coasts. In Vignudelli, S. K. A., and Cipollini, P. (eds.), Coastal Altimetry. Berlin: Springer, doi:https://doi.org/10.1007/978-3-642-12796-0_18

  • Desjonquères J-D, Carayon G, Steunou N, Lambin J (2010) Poseidon-3 radar altimeter: new modes and in-flight performances. Mar Geod 33:53–79

    Article  Google Scholar 

  • Dibarboure G, Lauret O, Mertz F, Rosmorduc V, Maheu C (2008) SSALTO/DUACS user handbook:(M) SLA and (M) ADT near-real time and delayed time products. Rep. CLS-DOS-NT, 6, p.39

  • Farzaneh S, Parvazi K (2020) Noise Analysis of Satellites Altimetry Observations for Improving Chart Datum within the Persian Gulf and Oman Sea. Annals of Geophysics 62(5):558

    Google Scholar 

  • Haddad M, Hassani H, Taibi H (2013) Sea level in the Mediterranean Sea: seasonal adjustment and trend extraction within the framework of SSA. Earth Sci Inf 6(2):99–111

    Article  Google Scholar 

  • Halperin M, Greenhouse SW, Cornfield J, Zalokar J (1955) Tables of percentage points for the studentized maximum absolute deviate in normal samples. J Am Statist Assn 50:185–195

    Google Scholar 

  • House MR (1995) Orbital forcing timescales: an introduction. Geol Soc Lond, Spec Publ 85(1):1–18

    Article  Google Scholar 

  • Huber PJ (1981) Robust statistics. Wiley, New York

    Book  Google Scholar 

  • Idžanovi’c M, Gerlach C, Breili K, Andersen OB (2019) An Attempt to Observe Vertical Land Motion along the Norwegian Coast by CryoSat-2 and Tide Gauges. Remote Sens 11:744

    Article  Google Scholar 

  • Kern M, Preimesberger T, Allesch M, Pail R, Bouman J, Koop R (2005) Outlier detection algorithms and their performance in GOCE gravity field processing. J Geod 78(9):509–519

    Article  Google Scholar 

  • Kaula WM, Schubert G, Lingenfelter RE, Sjogren WL, Wollenhaupt WR (1974) Apollo Laser Altimetry Inferences as to Lunar Structure. Proceeding Lunar Science Conference, 5th, Geochim. Cosmochim. Acta3, suppl. 5: 3049–3058

  • Martin-Puig C, Leuliette E, Lillibridge J, Roca M (2016) Evaluating the performance of Jason-2 open-loop and closed-loop tracker modes. Am. Meteorol. Soc

  • McGoogan JT (1975) Satellite altimetry applications. IEEE transactions on microwave theory and techniques, Vol. MTT-23, 12. NASA wallops flight center

  • Passaro M, Cipollini P, Vignudelli S, Quartly GD, Snaith HM (2014) ALES: a multi-mission subwaveform retracker for coastal and open ocean altimetry. Remote Sens Environ 145:173–189

    Article  Google Scholar 

  • Piccioni G, Dettmering D, Schwatke C, Passaro M, Seitz F (2019) Design and regional assessment of an empirical tidal model based on FES2014 and coastal altimetry. Adv Space Res

  • PO. DAAC (1993) PO. DAAC Merged Geophysical Data Record Users Handbook’ JPL D-11007, November 1996

  • Rousseeuw PJ, Leroy AM (1987) Robust regression and outlier detection. Wiley series in probability and mathematical statistics. Wiley, New York

    Book  Google Scholar 

  • Rosmorduc V, Benveniste J, Bronner E, Dinardo S, Lauret O, Maheu C, Milagro M, Picot N, Ambrozio A (2016) Escolà, R., Garcia-Mondejar, a., Restano, M., Schrama. E., Terra-Homem, M.: Radar altimetry tutorial. In: Benveniste, J., Picot, N.(eds.) ESA & CNES

  • Rosmorduc V, Benveniste J, Bronner E, Dinardo S, Lucas BM, Niejmeier S, Picot N, Breebaart L, Earith D (2010) Basic radar altimetry toolbox & tutorial. In proceedings of ‘ESA living planet symposium’, Bergen, Norway

  • Rodriguez E, Martin JM (1994) Assessment of the TOPEX altimeter performance using waveform retracking. J Geophys Res 99, C12: 24,957–970

  • Sandwell DT, Müller RD, Smith WHF, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67

    Article  Google Scholar 

  • Schrama EJ, Scharroo R, Naeije M (2000) Radar altimeter database system (RADS): towards a generic multi-satellite altimeter database system (p. 88). Netherlands remote sensing board (BCRS), Programme bureau, Rijkswaterstaat survey department

  • Vanicek P, Krakiwsky E (1991) Lecture note. Geodynamics for geodesists. University of New Brrunswick, Canada

  • Verron J, Sengenes P, Lambin J, Noubel J, Steunou N, Guillot A, Picot N, Coutin-Faye S, Gairola R, Raghava Murthy DVA et al (2015) The SARAL/AltiKa altimetry satellite mission. Mar Geod 38:2–21

    Article  Google Scholar 

  • Vignudelli S, Cipollini P, Roblou L, Lyard F, Gasparini GP, Manzella G, Astraldi M (2005) Improved satellite altimetry in coastal systems: case study of the Corsica Channel (Mediterranean Sea). Geophys Res Lett, 32(7)

  • Vu PL, Frappart F, Darrozes J, Marieu V, Blarel F, Ramillien G, Bonnefond P, Birol F (2018) Multi-satellite altimeter validation along the French Atlantic coast in the southern Bay of Biscay from ERS-2 to SARAL. Remote Sens 10(1):93

    Article  Google Scholar 

  • Wahr J (1995) (1995). Earth tides. Global earth physics. AGU Reference Shelf 1:40–45

    Google Scholar 

  • Wang, Y. (2004). Ocean tide modeling in the Southern Ocean. Ohio State University. Division of Geodetic Science

Download references

Acknowledgements

The author would like to thank the NASA and AVISO data team for providing the altimeter data. The authors would like to thank the anonymous reviewers for their constructive comments on an earlier version of this article. The useful comments of the editor Hassan A. Babaie and an anonymous reviewer are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Farzaneh.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzaneh, S., Parvazi, K. ATSAT: a MATLAB-based software for multi-satellite altimetry data analysis. Earth Sci Inform 14, 1665–1678 (2021). https://doi.org/10.1007/s12145-021-00585-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-021-00585-7

Keywords

Navigation