Skip to main content
Log in

Study on the Spray Characteristics and Oscillation Mechanism of a Feedback-Free Internal Impinging Nozzle

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Feedback-free internal impinging nozzle, which can generate fan-shape oscillating spray with constant pendulum angle, is well-suitable for flow control, as it has a wide range of operation frequency and does not require additional energy for moving parts. In this study, the spray characteristics of an internal impinging nozzle were investigated in an open atomization test bench by utilizing high-speed Schlieren technology and Malvern particle size analyzer. To better understand the jet oscillation mechanism and to evaluate its impact on the spray sweeping behaviors, a 3D CFD simulation was carried out, which takes the nozzle internal flow dynamics and the external spray morphology into account. The results indicate that the sweeping behavior of the emitted jet is caused by the impingement between two opposite internal jets inside the nozzle. A bi-model spray spatial flow distribution of the nozzle is observed with varying oscillating frequencies and constant spray pendulum angle at different injection pressures. The oscillation process can be divided into two stages depending on jet breakup processes, and the spray waveforms are influenced by the ratio of the durations of these two stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Availability of Data and Materials

All of the data and material are available.

Code Availability

Fluent.

References

  • Aram, S., Lee, Y.T., Shan, H., Vargas, A.: Computational fluid dynamic analysis of fluidic actuator for active flow control applications. Aiaa J. 56(1), 111–120 (2018)

    Article  Google Scholar 

  • Bidadi, S., Heister, S.D., Matsutomi, Y.: Computational and experimental study of jet interaction fluidic injectors. Atom. Spray 21(2), 127–138 (2011)

    Article  Google Scholar 

  • Bobusch, B.C., Woszidlo, R., Bergada, J.M., Nayeri, C.N., Paschereit, C.O.: Experimental study of the internal flow structures inside a fluidic oscillator. Exp. Fluids 54(6), 1559 (2013)

    Article  Google Scholar 

  • Cattafesta, L.N., Sheplak, M.: Actuators for active flow control. Ann. Rev. Fluid Mech. 43, 247–272 (2011)

    Article  Google Scholar 

  • Chahine, G.L., Kapahi, A., Choi, J.K., Hsiao, C.T.: Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrason Sonochem. 29, 528–549 (2016)

    Article  Google Scholar 

  • Funada, T., Joseph, D.D.: Viscous potential flow analysis of capillary instability. Int. J. Multiph. Flow 28(9), 1459–1478 (2002)

    Article  Google Scholar 

  • Gebert, B.M., Davidson, M.R., Rudman, M.J.: Computed oscillations of a confined submerged liquid jet. Appl. Math. Model 22(11), 843–850 (1998)

    Article  Google Scholar 

  • Gregory, J., Tomac, M.N.: A review of fluidic oscillator development and application for flow control. In: 43rd AIAA Fluid Dynamics Conference, p. 2474 (2013)

  • Guha, A., Barron, R.M., Balachandar, R.: An experimental and numerical study of water jet cleaning process. J. Mater. Process. Tech. 211(4), 610–618 (2011)

    Article  Google Scholar 

  • Guo, B.Y., Langrish, T.A.G., Fletcher, D.F.: An assessment of turbulence models applied to the simulation of a two-dimensional submerged jet. Appl. Math. Model 25(8), 635–653 (2001)

    Article  Google Scholar 

  • Hossain, M.A., Prenter, R., Lundgreen, R.K., Ameri, A., Gregory, J.W., Bons, J.P.: Experimental and Numerical Investigation of Sweeping Jet Film Cooling. J Turbomach 140(3), 031009 (2018)

  • Kara, K., Kim, D., Morris, P.J.: Flow-separation control using sweeping jet actuator. Aiaa J. 56(11), 4604–4613 (2018)

    Article  Google Scholar 

  • Lawson, N.J., Arruda, M.P., Davidson, M.R.: Control of a submerged jet in a thin rectangular cavity. J. Fluid Struct. 20(8), 1025–1042 (2005)

    Article  Google Scholar 

  • Li, D., Kang, Y., Ding, X.L., Wang, X.C., Fang, Z.L.: Effects of area discontinuity at nozzle inlet on the characteristics of high speed self-excited oscillation pulsed waterjets. Exp. Therm. Fluid Sci. 79, 254–265 (2016)

    Article  Google Scholar 

  • Lister, J.R., Stone, H.A.: Capillary breakup of a viscous thread surrounded by another viscous fluid. Phys. Fluids 10(11), 2758–2764 (1998)

    Article  MathSciNet  Google Scholar 

  • Mansy, H.: An experimental and numerical study of trapped vortex pair fluidic flowmeter. In: ASME FED Forum on Turbulent Flows, pp. 35–39 (1989)

  • Maurel, A., Ern, P., Zielinska, B.J.A., Wesfreid, J.E.: Experimental study of self-sustained oscillations in a confined jet. Phys. Rev. E 54(4), 3643–3651 (1996)

    Article  Google Scholar 

  • Meier, E.J., Heister, S.D.: Influence of Chamber Geometry and Operating Conditions on the Performance of Feedback-Free Fluidic Oscillators. Int. J. Flow Control 7(1–2), 19–36 (2015)

  • Pope, S.B.: Turbulent flows. IOP Publishing (2001)

  • Raghu, S.: Miniature fluidic devices for flow control. In: Proceedings of the ASME Fluids Engineering Division Summer Meeting (1999)

  • Raghu, S.: Feedback-free fluidic oscillator and method. In. Google Patents (2001)

  • Raghu, S.: Fluidic oscillators for flow control. Exp. Fluids 54(2), 1455 (2013). https://doi.org/10.1007/s00348-012-1455-5

  • Reichenzer, F., Schneider, M., Dorr, S.: Influence of geometry on a feedback-free fluidic oscillator with nonoutlet facing jets. Aiaa J. 56(12), 4768–4774 (2018)

    Article  Google Scholar 

  • Rockwell, D.: Oscillations of impinging shear layers. Aiaa J. 21(5), 645–664 (1983)

    Article  Google Scholar 

  • Schmidt, H.J., Woszidlo, R., Nayeri, C.N., Paschereit, C.O.: Separation control with fluidic oscillators in water. Exp. Fluids 58(8), 106 (2017)

    Article  Google Scholar 

  • Shakouchi, T.: An experimental study on the cavity type fluidic oscillator. Res. Rep. Fac. Eng., Mie Univ., Jpn. 6, 1–13 (1981)

    Google Scholar 

  • Sundstrom, E.T., Tomac, M.N.: Synchronization and flow characteristics of the opposed facing oscillator pair in back-to-back configuration. Flow Turbul. Combust. 104(1), 71–87 (2020)

    Article  Google Scholar 

  • Tomac, M.N.: Internal fluid dynamics and frequency characteristics of feedback-free fluidic oscillators. The Ohio State University (2013)

  • Tomac, M.N., Gregory, J.: Frequency studies and scaling effects of jet interaction in a feedback-free fluidic oscillator. In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 1248 (2012)

  • Tomac, M.N., Gregory, J.W.: Internal jet interactions in a fluidic oscillator at low flow rate. Exp Fluids 55(5), 1730 (2014). https://doi.org/10.1007/s00348-014-1730-8

  • Tomac, M.N., Gregory, J.W.: Internal flow physics of a fluidic oscillator spray in the transition regime. Atom. Spray 26(7), 673–686 (2016)

    Article  Google Scholar 

  • Tomac, M.N., Sundstrom, E.: Fluidic oscillator with variable sweep and inclination angles. Aiaa J 58(3), 1182–1193 (2020)

    Article  Google Scholar 

  • Uzol, O., Camci, C.: Experimental and computational visualization and frequency measurements of the jet oscillation inside a fluidic oscillator. J. Vis.-Jpn. 5(3), 263–272 (2002)

    Article  Google Scholar 

  • Woszidlo, R., Wygnanski, I.: Parameters governing separation control with sweeping jet actuators. In: 29th AIAA Applied Aerodynamics Conference, p. 3172 (2011)

  • Xie, W., Hu, Z.J., Zhao, W.B., Zhai, J.C., Wang, Y.F., Li, L.G., Wu, Z.J.: Experimental and numerical studies on spray characteristics of an internal oscillating nozzle. Atom. Spray 29(1), 19–37 (2019)

    Article  Google Scholar 

  • Zhang, Y., Fu, Q., Mo, C., Yang, L.: Molecular dynamics simulation of a nanoscale feedback-free fluidic oscillator. Aip Adv 7(11), 115311 (2017). https://doi.org/10.1063/1.5006894

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Grant No. U1832179) for this study.

Funding

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Grant No. U1832179) and Jiangsu Riying Electronics Co., Ltd. for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongjie Hu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Zhao, W., Hu, Z. et al. Study on the Spray Characteristics and Oscillation Mechanism of a Feedback-Free Internal Impinging Nozzle. Flow Turbulence Combust 107, 979–1002 (2021). https://doi.org/10.1007/s10494-021-00255-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-021-00255-0

Keywords

Navigation